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Abstract

In this dissertation, we provide a survey of the author’s work in energy optimization on

compact spaces with continuous potentials. We present several new results relating the

positive definiteness of a potential, convexity of its energy functional, and properties of the

minimizing measures of the energy, first in general spaces, then specifically on two-point

homogeneous spaces, and especially on spheres. We also obtain sufficient conditions for

the existence, and in some cases uniqueness, of discrete minimizers for a large class of

energies. We discuss the Stolarsky Invariance Principle, which connects discrepancy and

energy, as well as some analogues and generalizations of this phenomenon. In addition, we

investigate some particularly interesting optimization problems, such as determining the

maximum sum of pairwise angles between N points on the sphere Sd−1 and the maximum

sum of angles between N lines passing through the origin, both of which are related to

conjectures of Fejes Tóth. We also study the p-frame energies, which are related to sig-

nal processing and quantum mechanics. We show that on the sphere, the support of any

minimizer of the p-frame energy has empty interior whenever p is not an even integer,

and, moreover, that tight designs are the unique minimizers for certain values of p, among

other results. We complete this paper by developing the theory of minimization for ener-

gies with multivariate kernels, i.e. energies for which pairwise interactions are replaced

by interactions between triples, or more generally, n-tuples of particles. Such objects arise

naturally in various fields and present subtle difference and complications when compared

to the classical two-input case. We introduce appropriate analogues of conditionally posi-

tive definite kernels, establish a series of relevant results in potential theory, and present a

variety of interesting examples, including some problems in probabilistic geometry which

are related to multivariate versions of the Riesz s-energies.
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Chapter 1

Introduction

In numerous areas of mathematics and other sciences, one is faced with problems that can

be reformulated as a question of minimizing the discrete or continuous pairwise interaction

energy, i.e. expressions of the type

EK(ωN) :=
1

N2 ∑
x,y∈ωN

K(x,y) or IK(µ) :=
∫
Ω

∫
Ω

K(x,y)dµ(x)dµ(y) (1.1)

where ωN is a discrete set of N (not necessarily distinct) points in Ω, µ is a Borel proba-

bility measure on the domain Ω, and K is the potential function describing the pairwise

interaction. Perhaps one of the most famous examples of such a problem is the 1904

Thomson Problem, asking for the minimum electrostatic potential energy configuration(s),

i.e. equilibrium distributions (according to Coulomb’s Law), of N electrons on the unit

sphere, which is notoriously still open for most values of N. Note that in this setting, where

K(x,y) = 1
‖x−y‖ , as well as others where K(x,x) = ∞ for all x ∈Ω, we remove the diagonal

terms from the sum in (1.1). In an abstract sense, one can generally view ωN as a collection

of particles (and µ as a charge distribution) which repel or attract according to the potential

K.

The interactions described by (1.1) model many natural phenomena beyond electro-

statics: swarm behavior, self-assembly in computational chemistry, patterns of pores on
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spherical pollen grains, and the structure of molecules, to name a few. The problem of

determining optimal measures or point distributions for (1.1) also appears in a wide vari-

ety of more abstract settings, such as signal processing, coding theory, optimal transport,

discrepancy theory, and discrete geometry, among others. In particular, energy optimiza-

tion provides a method of distributing points on a manifold (i.e. the discretization of a

manifold), which arises in several contexts that are of interest to the scientific community:

quadrature rules, information theory, interpolation schemes, finite element tessellations,

statistical sampling, etc. The vast quantity of applications and connections to other ar-

eas has stimulated much study into energy optimization, which has been developed into a

full-blown theory whose state of the art is well presented in [BHS19].

In the present work, we add to the current theory by providing new methods to de-

termine minimizers for certain classes of energies. While characterizing optimizers for

energies (1.1) is of particular interest, this can often prove to be a difficult problem to ad-

dress completely, so we also present methods to determine certain general properties, such

as the discreteness or concentration of a minimizing measure’s support. We also apply our

methods to a number of interesting potentials.

We collect all of the necessary preliminary material in Chapter 2. In Chapter 3 we

explore, and show connections between, a variety of properties of kernels K, their energy

integrals IK , and local and global minimizers of such energies. In particular, we provide

numerous necessary and sufficient conditions in Section 3.3 to determine whether or not a

measure µ with full support is a minimizer of IK . In Sections 3.4 and 3.5, we provide some

additional results specific to the compact, connected, two-point homogeneous spaces and

the sphere, respectively. The new results in this chapter come predominantly from [BMV].

It shall be shown in Chapter 3 that if K is not positive definite (modulo an additive

constant) on Ω then any minimizer of IK cannot have full support. This naturally begs the

question of what the support of minimizing measures could be in this situation. In Chap-

ter 4, we provide some answers to this question, particularly on the compact, connected,
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two-point homogeneous spaces. Section 4.1 uses the structure of extreme points of sets

of moment-constrained measures to provide a sufficient condition for IK to have a discrete

minimizer on the sphere. In Section 4.2, we show that for analytic kernels that are not pos-

itive definite (modulo a constant), the support of any minimizer must have empty interior.

In Section 4.3, we make use of a linear programming method to show that tight designs

are (possibly unique) minimizers of certain energies. This chapter is based on work from

[BGM+a, BGM+b].

In Chapter 5, we present results that appear in [BDM18, BMV]. The problem of deter-

mining optimal configurations for EK for a fixed number N of points on the sphere is often

more delicate than finding the optimal measures for IK . In the case that σ , the normalized

Lebesgue measure on Sd−1, is a minimizer of IK , one might expect that as N increases, min-

imizers of EK should be “uniformly distributed,” in some sense, in order to approximate σ .

Chapter 5 discusses using discrepancy, a popular means of measuring uniformity of distri-

bution of points on the sphere, to determine minimizers of IK and EK for positive definite

functions K via a Generalized Stolarsky Principle. Section 5.1 provides a simple proof of

the classic Stolarsky Invariance Principle, and in Section 5.2, we present an analogue that

addresses a conjecture of Fejes Tóth about the maximum sum of geodesic distances on the

sphere. The Generalized Stolarsky Principle on spheres, and more generally in compact

metric spaces, is then given in section 5.3 and 5.4, respectively.

In Chapter 6 we discuss the p-frame energies, introduced by Ehler and Okoudjou in

[EO12] as a generalization of the frame energy, which Benedetto and Fickus used in [BF03]

to classify finite unit norm tight frames (FUNTFs). We discuss the frame energy in Section

6.1 and the more general p-frame energy in Section 6.2, in particular applying the results of

Section 4.3 to show that for some values of P, tight designs minimize the p-frame energy,

when they exist. Section 6.3 shows that the 600-cell is also a minimizer for certain p-frame

energies. In Section 6.2, we conjecture that for p 6∈ 2N, all minimizers of the p-frame

energy are discrete. Though a proof of this conjecture remains elusive, in Section 6.4, we

3



show that for these p-frame energies on the real sphere, the support of any minimizer must

have empty interior. Section 6.5 extends some of our results to a non-compact setting, and

Section 6.6 connects our results to a problem from Convex Geometry. The results in this

chapter are based on the work in [BGM+a, BGM+b].

In Chapter 7, we discuss a conjecture of Fejes Tóth about the maximum sum of acute

angles of points on the sphere, and present new results in this direction in Section 7.1, as

well as new proofs for the conjecture on S1 in Section 7.2. The results presented were

obtained in [BM19].

Chapter 8 addresses a different type of problem than the other sections. In the last few

decades, many-body interactions (i.e. kernels with three or more inputs instead of two) have

become a greater subject of interest in material science, quantum mechanics, and discrete

geometry. While a great deal of theory has been developed to address energy optimization

problems that form from two-body interactions, i.e., those described in (1.1), very little

exists for optimizing energies of the form

1
Nn

N

∑
j1=1
· · ·

N

∑
jn=1

K(x j1, ...,x jn) or
∫
Ω

· · ·
∫
Ω

K(x1, ...,xn)dµ(x1)...dµ(xn). (1.2)

To address these deficiencies, we present the first steps in developing a general theory

for such energies. In Section 8.1, we introduce some relevant notation and definitions,

in particular defining n-positive definiteness, a generalization of positive definiteness. In

Sections 8.2, 8.3, and 8.4, we provide various necessary and sufficient conditions for a

measure µ to be a minimizer of the n-input energy. Many of these results are analogues,

for our multivariate setting, of results in Chapter 3. In Sections 8.5 and 8.6, we present

examples of n-input kernels which are (conditionally) n-positive definite and which are not,

respectively. In Section 8.7, we adapt the semidefinite programming method from [BV08]

to our setting, and apply that method, as well as others, to answer certain questions from

probabilistic discrete geometry. This chapter is based on work from [BFG+a, BFG+b].
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1.1 Summary of Main Results

The following is a list of the main results of this thesis.

• A list of properties equivalent to a kernel K being conditionally positive definite

when there exists a K-invariant probability measure of full support (Theorem 3.3.1).

Similar characterizations are provided for positive definiteness (Theorem 3.3.2) and

conditionally strict positive definiteness (Theorem 3.3.3).

• The existence of discrete minimizers for the energy of any rotationally invariant

kernel on the sphere with finitely many positive Gegenbauer coefficients (Theorem

4.1.3).

• A proof that the energy of a real-analytic kernel that is not positive definite (modulo

a constant) on the sphere can only be minimized by a measure whose support has

empty interior (Theorem 4.2.1).

• Characterizations of large classes of energies on spheres and projective spaces for

which tight designs are minimizers (Theorem 4.3.1) and for which tight designs are

unique minimizers (Theorem 4.3.12).

• An explicit connection between L2 discrepancy with respect to hemisphere and the

sum of geodesic distances of any point set on the sphere (Theorem 5.2.1). This is used

to provide a complete solution of a conjecture of Fejes Tóth, which characterized all

configurations on a sphere that maximize the sum of geodesic distances between

points on the sphere (Theorem 5.2.10).

• Generalizations of the Stolarsky Invariance Principle for positive definite kernels on

the sphere (Theorem 5.3.1) and positive definite kernels on general compact metric

spaces (Theorem 5.4.1).
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• A classification of p-frame energies for which tight designs are the unique minimiz-

ers (Theorem 6.2.3).

• A proof that the minimizers of the p-frame energy on the sphere necessarily have

empty interior, whenever p is not a even integer (Theorem 6.4.1).

• The best known bound on the acute angle energy, which comes from a conjecture of

Fejes Tóth (Theorem 7.1.1).

• Development of an initial theory for energy optimization with multivariate kernels

(Chapter 8). In particular:

– Necessary (Theorem 8.3.2) and sufficient (Theorem 8.3.3) conditions for a mea-

sure to minimize an multivariate energy.

– The relationship between the local minimizers of a multivariate energy, and the

corresponding two-input potential (Theorem 8.3.8).

– The determination of a large class of multivariate energies on the sphere for

which the uniform measure is a minimizer, based on a semidefinite program-

ming method (Theorem 8.7.1).

– A characterization of the maximizing measures of the expected value of the

squared area of a triangle with i.i.d. vertices on the sphere (Theorem 8.8.4).

1.2 Notation

We shall use the following notation throughout the text.

R The set of real numbers

C The set of complex numbers

H The set of quaternions
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O The set of octonions

F R, C, H, or O

〈x,y〉H The inner product for some Hilbert space H

〈·, ·〉 The inner product on Rd , Cd , or Hd

‖x‖H The norm for some space H

‖x‖ The Euclidean norm on Rd , Cd , or Hd

dimR(F) The dimension of F as a real manifold

N The set of positive integers

N0 The set of nonnegative integers

Ω = (Ω,ρ) A metric space, compact unless stated otherwise

Φ = Φ(α,β ) A compact, connected, two-point homogeneous space

FPd−1 The projective space over F

Sd−1 The (d−1)-dimensional unit sphere in Rd

α For Sd−1 or FPd−1, (d−1)dimR(F)
2 −1

β α for Φ = Sd−1 and dimR(F)
2 −1 for Φ = FPd−1

Sd−1
F The (d−1)-dimensional unit sphere in Fd

L2(Ω,µ) The space of real-valued square-integrable functions on Ω

L2(Ω,µ,C) The space of complex-valued square-integrable functions on Ω

Vn =V (α,β )
n The eigenspaces of the Laplace-Beltrami operator on Φ(α,β )

Yn,k = Y (α,β )
n,k The basis elements of V (α,β )

n

H d
n The space of spherical harmonics of degree n on Sd−1

λ For the sphere Sd−1, d−2
2

γα,β 2α+β+1B(α +1,β +1), where B is the beta function

Ad−1 The surface area of Sd−1

Vold The volume of the unit ball in Rd

η The normalized uniform surface measure on Φ

σ The normalized (d−1)-dimensional Hausdorff measure on Sd−1
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dν(α,β )(t) 1
γα,β

(1− t)α(1+ t)β dt

dwλ (t)
Γ(λ+1)√
πΓ(λ+ 1

2 )
(1− t2)λ− 1

2 dt

P(Ω) The set of Borel probability measures on Ω

P∗(Ω) The subset of P(Ω) satisfying
∫
Ω

||x||2dµ(x) = 1

P̃(Ω) The set of signed probability measures on Ω

M (Ω) The set of finite signed Borel measures on Ω

Z (Ω) The set of finite signed Borel measures ν such that ν(Ω) = 0

B(Ω) The set of finite positive Borel measures on Ω

ϑ The geodesic (Riemannian) metric on Φ

ϑ ∗ The normalization of ϑ , i.e. ϑ

π

D The Euclidean metric, i.e. D(x,y) = ‖x− y‖

ρ The chordal metric on Φ

τ(x,y) cos(ϑ(x,y)) for x,y ∈Φ

|Z| The cardinality of a finite set Z

P(α,β )
n The Jacobi polynomials, scaled so that P(α,β )

n (1) = dim(V (α,β )
n )

Cn =C(α,β )
n The Jacobi polynomials, scaled so that Cn(1) = 1

Qn = Q(α,β )
n The monic Jacobi polynomials, i.e. scaled so the leading coefficient is 1

Cλ
n The Gegenbauer polynomials

F̂n = F̂(α,β )
n The Jacobi coefficient of F with respect to C(α,β )

n

F̂(n,λ ) The Gegenbauer coefficients of F

C A code (finite point configuration) on Φ

A (C ) The “distance set” of C , {τ(x,y) : x,y ∈ C }

C(z,h) The spherical cap of height h centered at z, i.e. {x ∈ Sd−1 : 〈x,z〉> h}

pF The projection from the sphere Sd−1
F to the projective space FPd−1

e1, ...,ed The standard orthonormal basis in Rd

Y The complex-conjugate of a function Y

diam(Ω) The diameter of Ω, i.e. supx,y∈Ω ρ(x,y)

8



supp(µ) The support of µ .

A The closure of a set A

U◦ The interior of a set U
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Chapter 2

Background

We begin with some important background material. Section 2.1 contains the discussion of

background for our study of energy, including an introduction to the Riesz s-energies. Sec-

tions 2.2 and 2.3 introduce positive definiteness and various consequences of this property,

including Mercer’s Theorem and resulting characterization of positive definite kernels. In

Section 2.4, we discuss compact, connected, two-point homogeneous spaces and covers

the relevant properties of such spaces and the corresponding system of orthogonal, isom-

etry invariant polynomials. Section 2.5 does the same for the real unit sphere. In Section

2.6, we provide an exposition on designs and, in particular, tight designs.

2.1 Energy

Unless otherwise noted, in what follows, we assume that (Ω,ρ) is a compact metric space

and that the kernel (also referred to as potential) K : Ω2→ R is continuous and symmetric,

i.e. for all x,y ∈ Ω, K(x,y) = K(y,x). We denote by M (Ω) the set of finite signed Borel

measures on Ω, and by P(Ω) the set of Borel probability measures on Ω.

11



Given µ,ν ∈M (Ω), we define their mutual/mixed K-energy as

IK(µ,ν) =
∫
Ω

∫
Ω

K(x,y)dµ(x)dν(y), (2.1)

and the (continuous) K-energy of µ to be

IK(µ) := IK(µ,µ) =
∫
Ω

∫
Ω

K(x,y)dµ(x)dµ(y). (2.2)

We are interested in finding the optimal (maximal or minimal, depending on K) values of

IK(µ) over all µ ∈ P(Ω), as well as extremal measures for which these values are achieved,

i.e. equilibrium measures with respect to K. Note that the minimization of IK is equivalent

to the maximization of I−K , so we will often discuss optimization problems in terms of

minimization, but switch to energy maximization when it is more convenient. In various

parts of the text, we will be interested in local minimizers or global minimizers over differ-

ent sets of measures, so it is worth specifying here that whenever we say a measure µ is a

“minimizer” of IK without any additional conditions, we mean that µ is a global minimizer

of IK over P(Ω), i.e. for all ν ∈ P(Ω), IK(µ)≤ IK(ν). We denote the minimal continuous

K-energy, i.e. the Wiener constant, by

IK(Ω) = inf
µ∈P(Ω)

IK(µ). (2.3)

A naturally related question is that of discrete energy optimization. Let ωN = {z1,z2, ...,zN}

be an N-point configuration (multiset) in Ω for N ≥ 2. We define the discrete K-energy of

ωN to be

EK(ωN) =
1

N2 ∑
x,y∈ωN

K(x,y) (2.4)
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and the minimal discrete N-point K-energy of Ω as

EK(Ω,N) := inf
ωN⊆Ω

EK(ωN). (2.5)

Note that since we are working with continuous K, the energy IK is well-defined for all

finite signed Borel measures. In addition, the compactness of Ω implies that P(Ω) is weak∗

compact and guarantees the existence of global minimizers for both discrete and continuous

energies.

The definitions of discrete (2.4) and continuous (2.2) energies are compatible in the

sense that

EK(ωN) = IK(µωN ), where µωN =
1
N ∑

x∈ωN

δx (2.6)

and due to the weak∗ density of the linear span of Dirac masses in P(Ω), we have the

following lemma [Cho58, FN08].

Lemma 2.1.1. For any continuous kernel K on Ω,

lim
N→∞

EK(Ω,N) = IK(Ω). (2.7)

Moreover, suppose that {ωN}∞
N=2 is a sequence of N-point configurations on Ω satisfying

lim
N→∞

EK(ωN) = IK(Ω),

and define, for each N ≥ 2,

µωN =
1
N ∑

x∈ωN

δx.

If N ⊂N is a sequence of integers such that µωN weak∗ converges to a probability measure

µ as N→ ∞, N ∈N , then

IK(µ) = IK(Ω)

i.e. µ is a minimizer of IK .
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For a measure µ ∈ P(Ω), we define the potential U µ

K of µ with respect to K as

U µ

K (x) :=
∫
Ω

K(x,y)dµ(y), x ∈Ω. (2.8)

Notice that this meaning of the term “potential” is consistent with us calling K a potential,

since the function K(x,y) is simply the potential generated by a unit point charge at y, i.e.

K(x,y) =Uδy
K (x).

Though this work predominantly focuses on energy minimization with compact do-

mains Ω and continuous kernels K, energy optimization need not be restricted to such set-

tings. For instance, if (Ω,ρ) is an arbitrary metric space, energy minimization is sensible

so long as we can guarantee the existence of optimal discrete sets or probability measures.

This clearly occurs when Ω is compact and K continuous, but for non-compact Ω, conti-

nuity of the kernel K is no longer sufficient. Instead, the compactness of the support of

minimizers can be achieved by placing certain additional restrictions on our kernel K, as

will be discussed in the introduction of Chapter 4, or by placing some conditions on the set

of measures we optimize over, as will be discussed in Section 6.5.

Another, more common, generalization is to consider lower semi-continuous kernels

K : Ω2 → (−∞,∞]. In this setting, one often removes the diagonal terms from 2.4 (and

must if K(x,x) = ∞ for all x ∈Ω), and can only consider the mutual energy of finite signed

measures µ,ν ∈M (Ω) if IK(µ,ν) is well-defined. Many of the results we present in

Section 3.3 have analogues or generalizations to lower semi-continuous kernels, though

the proofs are often more technically demanding, by necessity.

The most famous family of lower semi-continuous kernels in Potential Theory are

known as the Riesz s-kernels, defined by

Ds(x,y) = ||x− y||−s s ∈ R\{0}. (2.9)

The optimization of Riesz s-energies is related to several other well-known problems
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in mathematics and other sciences and has been the subject of study for over a century,

with the physicist J.J. Thomson posing the problem of finding the minimizers of ED1 on S2

in 1904. Though exact minimizing configurations for the Thompson problem are known

only for a few values of N [And96, Föp12, Sch, Sch20, Yud92], the asymptotic behavior

of minimizers of the discrete Riesz s-energies are better understood. In particular, on the

sphere Sd−1, it is known that for all s > 0, minimizing point configurations are asymptot-

ically uniformly distributed with respect to the normalized (d−1)-dimensional Hausdorff

measure on the sphere, σ [KS98, Lan72]. For s ≥ d, this result, known as the “Poppy-

Seed Bagel Theorem,” has been generalized to d-rectifiable manifolds [HS05]. This is a

natural consequence of the fact that as s→ ∞ with N fixed, the discrete Riesz s-energy is

increasingly dominated by the term(s) involving the smallest pairwise distances, a property

that, on the sphere, leads to the limiting case (i.e. s = ∞) being the best-packing problem

[CS99, BHS19].

In the case where s < 0, we see that the Riesz s-kernels are continuous, and the opti-

mization problem becomes one of maximization instead of minimization. The maximum

value of IDs for s < 0 was first studied by Pólya and Szegö on spheres and balls in [PS31].

In [Bjö56], Björck determined properties of maximizing measures on general compact sets.

Theorem 2.1.2. Let d ≥ 1, s < 0, and Ω⊆ Rd be compact. If µ is a maximizer of IDs over

P(Ω), then the following hold:

1. supp(µ) is a subset of the boundary of Ω, i.e. Ω\Ω◦, where Ω and Ω◦ are the closure

and interior of Ω in Rd , respectively.

2. if s <−1, then supp(µ) is a subset of the extreme points of the convex hull of Ω.

3. If s<−2, then µ is a discrete measure consisting of no more than d+1 point masses.

4. If 0 > s >−2, then µ is the unique maximizer of IDs .
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Moreover, on the sphere, Björck was able to completely characterize the maximizer of

these Riesz s-energies on the unit sphere Sd , see Theorem 5.2.9.

We finish this section with a fairly basic and intuitive idea, but one which will play an

important role in our results.

Lemma 2.1.3. If µ ∈ P(Ω) is a minimizer of IK , then for all C ∈ R, µ is a minimizer of

IK+C. Likewise, if ωN is a minimizer of EK over all N-point configurations in Ω then for all

C ∈ R, ωN is also a minimizer of EK+C

Proof. Let C ∈ R. For all ν ∈ P(Ω),

IK+C(ν) = IK(ν)+(ν(Ω))2C = IK(ν)+C ≥ IK(µ)+C = IK+C(µ).

The discrete case follows immediately from the continuous case.

For a more comprehensive exposition on Energy Optimization, especially one that dis-

cusses lower semi-continuous kernels and Riesz s-energy in greater detail, we refer the

reader to [BHS19].

2.2 Positive Definite Kernels

We now recall the classical notion of positive definite kernels, which play an extremely

important role in various areas of mathematics, such as Partial Differential Equations, Ma-

chine Learning, and Probability. Here, we will focus on their relation to energy minimiza-

tion problems, but an exposition on their role in other areas can be found in [Fas11]. We

state the definition in the form most relevant to our work.

Definition 2.2.1. A kernel K : Ω2→ R is called conditionally positive definite if for every

ν ∈Z (Ω) (i.e. finite signed Borel measures satisfying ν(Ω) = 0), IK(ν)≥ 0.

If, moreover, IK(ν)≥ 0 for every finite signed Borel measure, i.e. ν ∈M (Ω), then we

call K positive definite.
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We call a kernel strictly positive definite or conditionally strictly positive definite if

it is positive definite or conditionally positive definite, respectively, and IK(ν) = 0 only if

ν(A) = 0 for all Borel sets A⊆Ω.

If there exists some C ∈R such that K+C is a (strictly) positive definite kernel, we call

K (strictly) positive definite modulo an additive constant (or up to an additive constant).

A more standard way of defining positive definiteness of a kernel K : Ω2→ R is by re-

quiring, for every n∈N and {zi}N
i=1⊂Ω, the matrix

[
K
(
zi,z j

)]N
i, j=1 is positive semidefinite,

i.e. for any sequence {ci}N
i=1 ⊂ R, the kernel K satisfies the inequality

N

∑
i, j=1

cic jK
(
zi,z j

)
≥ 0. (2.10)

Since our kernel K is continuous, this is clearly equivalent to Definition 2.2.1 due to the

weak∗ density of discrete measures in M (Ω).

Occasionally in this text, especially when focusing on energy maximization, we will

also want to make use of the negative definiteness of a kernel. We shall call a kernel K

negative definite if the kernel −K is positive definite.

A constant, positive kernel, i.e. K(x,y) = c > 0 for all x,y ∈ Ω, is clearly positive

definite, so it is clear such kernels always exist. Moreover, we can construct continuous

positive definite kernels in the following way:

Lemma 2.2.2. For j ∈ N0, let λ j ≥ 0 and φ j : Ω→ R be continuous. Then if the series

converges absolutely and uniformly, the kernel

K(x,y) =
∞

∑
j=0

λ jφ j(x)φ j(y) (2.11)

(which is continuous, due to uniform convergence) is positive definite.
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Proof. Let µ ∈M (Ω). Then

IK(µ) =
∞

∑
j=0

λ j

∫
Ω

∫
Ω

φ j(x)φ j(y)dµ(x)dµ(y)

=
∞

∑
j=0

λ j

(∫
Ω

φ j(x)dµ(x)
)2

≥ 0.

In Section 2.3, we will show that this actually provides a characterization of positive

definite kernels.

In addition to a relatively simple characterization, positive definite kernels have several

other useful properties, many of which will be discussed in Chapter 3. To begin with, they

are closed under addition, multiplication (a result known as the Schur product theorem),

and limits of uniformly convergent sequences.

Lemma 2.2.3. If K and L are positive definite kernels on Ω, then so are K +L and KL. If

K1,K2, ..., are positive definite and limn→∞ Kn = K uniformly, then K is positive definite.

The statements regarding the sum and limit (but not the product) hold if we replace positive

definiteness with conditional positive definiteness.

Though the theory tends to focus on the (strict) positive definiteness of kernels, Lemma

2.1.3 shows us that adding a constant does not affect the minimizer, so we often consider

kernels that are (strictly) positive definite modulo a constant. However, adding a constant

never changes conditional (strict) positive definiteness, as for all C ∈ R and ν ∈Z (Ω),

IK+C(ν) = IK(ν)+(ν(Ω))2C = IK(ν).

Since (strict) positive definiteness implies conditional (strict) positive definiteness, we ar-

rive at the following lemma.
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Lemma 2.2.4. If K is (strictly) positive definite modulo a constant, then K is conditionally

(strictly) positive definite.

In Section 3.3, we will demonstrate that the converse of Lemma 2.2.4 can hold under

certain conditions. However, it does not hold in general:

Example 2.2.5. Consider K :
(
Sd−1

)2
→R defined by K(x,y) = x1+y1, where x1 = 〈x,e1〉

here. Then K is conditionally positive definite, but not positive definite modulo a constant.

Proof. For all ν ∈Z (Sd−1),

IK(ν) = 2
∫

Sd−1

∫
Sd−1

x1dν(x)dν(y) = 0,

so K is conditionally positive definite.

Now we show there is no constant C such that K +C is positive definite. If C < 0, then

IK+C(σ) = 2
∫

Sd−1

x1dσ(x)+C =C < 0.

Suppose that C ≥ 0 and let µ = (C+1)δ−e1−Cδe1 ∈M (Sd−1). Then

IK+C(µ) = 2µ(Sd−1)
∫

Sd−1

x1dµ(x)+C(µ(Sd−1))2

= 2(−2C−1)+C

=−3C−2 < 0.

Our proof is now complete.

We complete this section by presenting an interesting result that allows one to construct

positive definite kernels from conditionally positive definite ones, a result we shall use in

Chapter 8.
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Lemma 2.2.6 (Chp. 3, Lemma 2.1, [BCR84]). Let x0 ∈Ω, K : Ω2→ R be a kernel, define

K′(x,y) := K(x,y)+K(x0,x0)−K(x,x0)−K(x0,y).

Then K′ is positive definite if and only if K is conditionally positive definite. If K(x0,x0)≤ 0

and

K′0(x,y) := K(x,y)−K(x,x0)−K(x0,y),

then K′0 is positive definite if and only if K is conditionally positive definite.

2.3 Mercer’s Theorem

Let µ be a Borel probability measure on Ω and let K be a continuous kernel on Ω. We shall

consider the operator TK,µ associated to K on the space of real-valued functions on Ω that

are square-integrable with respect to µ , L2(Ω,µ). This is a linear integral operator, with

kernel K, defined by

TK,µψ(x) =
∫
Ω

K(x,y)ψ(y)dµ(y). (2.12)

Lemma 2.3.1. Let Ω̃ = supp(µ). The operator TK,µ is self-adjoint and Hilbert-Schmidt,

and the eigenfunctions of TK,µ corresponding to non-zero eigenvalues are continuous on Ω̃.

The kernel K is positive definite on Ω̃ if and only if TK,µ is a positive operator on L2(Ω,µ).

Proof. Self-adjointedness immediately follows from K(x,y) being symmetric. Since Ω is

compact (and hence Ω̃ is also) and K continuous, we know that

∫
Ω

∫
Ω

|K(x,y)|2dµ(x)dµ(y)< ∞,

which implies that TK,µ is Hilbert-Schmidt.
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Now, suppose that TK,µφ = λφ for λ 6= 0. Then the representation

φ(x) =
1
λ

∫
Ω

K(x,y)φ(y)dµ(y)

implies that φ is continuous on Ω̃.

We now show that the positive definiteness of K and the positivity of TK,µ are equiva-

lent. If K is positive definite on Ω̃, then for any ψ ∈ L2(Ω,µ),

〈ψ,TK,µψ〉L2(Ω,µ) =
∫
Ω

∫
Ω

K(x,y)ψ(x)ψ(y)dµ(x)dµ(y) = IK(ψ(·)µ)≥ 0,

so TK,µ is indeed positive.

Assume instead that TK,µ is positive. Observe that measures, which are absolutely

continuous with respect to µ and have bounded density, i.e. measures of the form dν =

f dµ , where f is a bounded Borel measurable function on Ω̃, are weak∗ dense in M (Ω̃).

To show this, notice that for each ball B(z,r) of radius r > 0 centered at the point z ∈ Ω̃, we

have µ(B(z,r)) 6= 0, and therefore, the functions fr(x) = 1
µ(B(z,r))1B(z,r)(x) are well-defined

and bounded. Obviously, the measures νr defined by dνr = fr dµ converge weak∗ to δz as

r→ 0, which suffices due to weak∗ density of discrete measures.

Then for all such measures of the form dν = f dµ , since bounded functions are in

L2(Ω,µ), we have

IK(ν) = 〈TK,µ f , f 〉 ≥ 0,

and by weak∗ density, it follows that K is positive definite on Ω̃.

Moreover, since TK,µ is a Hilbert-Schmidt operator, it is in fact a compact operator.

Hence, we may apply the Spectral Theorem.

Theorem 2.3.2 (Spectral Theorem for Compact Operators). Suppose that H is a Hilbert

space and T : H → H is a compact, self-adjoint operator. Then there exists an orthonor-
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mal basis {φ j}dim(H)
j=1 of H consisting of eigenvectors of T and corresponding eigenvalues

{λ}dim(H)
j=1 such that |λ j| ≥ |λ j+1| for 1≤ j < dim(H). If dim(H) = ∞, then lim j→∞ λ j = 0.

Thus, there exists an orthonormal basis {φ j}dim(L2(Ω,µ))
j=1 of L2(Ω,µ) consisting of eigen-

functions of TK,µ , i.e. TK,µφ j = λ jφ j, where the sequence of eigenvalues satisfies |λ j| ≥

|λ j+1| and lim j→∞ λ j = 0 if dim(L2(Ω,µ)) = ∞. Moreover, the Spectral Theorem tells us

that, in the L2 sense,

K(x,y) =
dim(L2(Ω,µ))

∑
j=1

λ jφ j(x)φ j(y).

For the rest of this section, we will assume that supp(µ) = Ω, in other words, every

non-empty open subset of Ω has strictly positive measure (if supp(µ) 6= Ω, then the results

of this section apply for Ω̃ = supp(µ)), and that K, {φ j}dim(L2(Ω,µ))
j=1 , and {λ}dim(L2(Ω,µ))

j=1

are as above. If K is positive definite, we know that TK,µ is a positive operator, so for each

j ≥ 1,

λ j = 〈φ j,λ jφ j〉L2(Ω,µ) = 〈φ j,TK,µφ j〉L2(Ω,µ) ≥ 0.

Mercer’s theorem then provides a series representation for any positive definite kernel K.

Theorem 2.3.3 (Mercer’s Theorem). If K(x,y) is positive definite, then

K(x,y) =
dim(L2(Ω,µ))

∑
j=1

λ jφ j(x)φ j(y), (2.13)

where the sum converges absolutely and uniformly.

It is worth noting that it would suffice to assume that K is continuous and that all eigen-

values of TK,µ are nonnegative (which is in fact equivalent to K being positive definite).

Proof. As mentioned above, the fact that (2.13) holds in the L2 sense follows from the

Spectral Theorem for compact operators, hence, only uniform and absolute convergence

need to be proven. They immediately follow if dim(L2(Ω,µ)) < ∞, so we assume that

L2(Ω,µ) is infinite dimensional.
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Consider the remainder of the series, i.e. the continuous function

RN(x,y) = K(x,y)−
N

∑
j=1

λ jφ j(x)φ j(y).

The corresponding Hilbert-Schmidt operator defined by TRN ,µψ(x) =
∫
Ω

RN(x,y)ψ(y)dµ(y)

is clearly bounded and positive: if ψ = ∑
∞
j=1 ψ̂ jφ j, then

〈TRN ,µψ,ψ〉=
∞

∑
j=N+1

λ j
∣∣ψ̂ j
∣∣2 ≥ 0.

For a positive Hilbert-Schmidt operator, the kernel is non-negative on the diagonal, i.e.

RN(x,x) ≥ 0 for each x ∈ Ω. Indeed, assume that for some x ∈ Ω we have RN(x,x) < 0.

Then we can choose a neighborhood U of x so that RN is negative on U×U , so

〈TRN ,µ1U ,1U〉=
∫
U

∫
U

RN(x,y)dµ(x)dµ(y)< 0,

which is a contradiction.

Thus, RN(x,x) ≥ 0 for each x ∈ Ω, i.e. for any N ≥ 1 we have
N

∑
j=1

λ jφ
2
j (x)≤ K(x,x),

and thus
∞

∑
j=1

λ jφ
2
j (x)≤ K(x,x).

Invoking the Cauchy–Schwarz inequality, we find that

∣∣∣∣ ∞

∑
j=1

λ jφ j(x)φ j(y)
∣∣∣∣≤ ∞

∑
j=1

λ j
∣∣φ j(x)φ j(y)

∣∣≤ ( ∞

∑
j=1

λ jφ
2
j (x)

)1/2( ∞

∑
j=1

λ jφ
2
j (y)

)1/2

≤ K1/2(x,x)K1/2(y,y)≤ sup
x∈Ω

K(x,x)< ∞.

Therefore, the series in (2.13) converges absolutely. Combining this with the Cauchy Cri-

terion for Uniform Convergence (which we may use, since Ω is compact, and therefore

complete), we find that the series converges uniformly.
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We now provide a few simple corollaries of Mercer’s Theorem. From the absolute

convergence, we obtain

∫
Ω

K(x,x)dµ(x) = ∑λ j

∫
φ

2
j dµ = ∑λ j,

and thus
dim(L2(Ω,µ))

∑
j=1

λ j < ∞. (2.14)

By combining Mercer’s Theorem with Lemma 2.2.2 we arrive at a characterization of

all positive definite kernels.

Corollary 2.3.4. The kernel K is positive definite if and only if for some orthonormal basis

{ψ j}dim(L2(Ω,µ))
j=1 of L2(Ω,µ) and sequence of nonnegative real numbers {κ j}dim(L2(Ω,µ))

j=1 ,

K(x,y) =
dim(L2(Ω,µ))

∑
j=1

κ jψ j(x)ψ j(y)

where the sum converges absolutely and uniformly, κ j ≥ 0 for each j, and ψ j is continuous

whenever κ j > 0.

We can also obtain a clear generalization of Mercer’s Theorem. Consider the sets

N+(K) = {n ≥ 1 : λ j > 0} and N−(K) = {n ≥ 1 : λ j < 0}. If |N−(K)| < ∞, then the

kernel

K(x,y)− ∑
n∈N−(K)

λ jφ j(x)φ j(y)

is continuous and positive definite. The absolute and uniform convergence of this new

kernel then guarantees the following Corollary.

Corollary 2.3.5. Suppose the operator TK,µ has finitely many negative eigenvalues. Then

(2.13) holds, with the series converging uniformly and absolutely.

Finally, we supply another way to characterize positive definite functions.
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Proposition 2.3.6. A kernel K is positive definite if and only if there exists some k ∈ L2(Ω×

Ω,µ×µ) such that k can be represented as

k(x,y) =
dim(L2(Ω,µ))

∑
j=1

κ jφ j(x)φ j,

in the L2 sense, and for all x,y ∈Ω,

K(x,y) =
∫
Ω

k(x,z)k(z,y)dµ(z). (2.15)

As will be shown in the proof below, the coefficients κ j satisfy κ2
j = λ j for all j.

Proof. For any choices of real κ j’s, we have, in the L2 sense, the following equalities:

∫
Ω

k(x,z)k(z,y)dµ(z) = 〈k(x, ·),k(y, ·)〉L2(Ω,µ) =
dim(L2(Ω,µ))

∑
j=1

κ
2
j φ j(x)φ j(y).

If we assume that K is positive definite, and choose κ j =
√

λ j for each j, then clearly

k ∈ L2(Ω×Ω,µ×µ), and, since

∫
Ω

k(x,z)k(z,y)dµ(z) =
dim(L2(Ω,µ))

∑
j=1

λ jφ j(x)φ j(y) = K(x,y)

in the L2 sense, we have pointwise equality due to Mercer’s Theorem.

Alternatively, if we assume that

K(x,y) =
∫
Ω

k(x,z)k(z,y)dµ(z),

25



then for any finite point configuration ωN = {z1, ...,zN} in Ω and c1, ...,cN ∈ R, we have

N

∑
j=1

N

∑
i=1

K(z j,zi)c jci =
N

∑
j=1

N

∑
i=1

c jci

∫
Ω

k(z j,z)k(z,zi)dµ(z)

=
∫
Ω

( N

∑
j=1

c jk(z j,z)
)2

dµ(z)≥ 0.

Thus, K is clearly positive definite.

2.4 Two-Point Homogeneous Spaces

In this paper, we will predominantly focus on energy optimization problems for compact,

connected, two-point homogeneous spaces. A metric space (Ω,ρ) is said to be two-point

homogeneous, if for every two pairs of points x1,x2 and y1,y2 such that ρ(x1,x2)= ρ(y1,y2)

there exists an isometry of Ω mapping xi to yi, i = 1,2. It is known [Wan52] that any

such compact connected space is either a real sphere Sd−1, a real projective space RPd−1,

a complex projective space CPd−1, a quaternionic projective space HPd−1, or the Cayley

projective plane OP2. Note that it suffices to consider FPd for d > 2 only, as FP1 is isomor-

phic to the sphere SdimR(F) [Bae02, p. 170], and so it will not be separately considered in

what follows. Naturally, other two-point homogeneous spaces exist, such as the Euclidean

spaces Rd , which are not compact, and the Hamming Cube, which is not connected, but

here we will only consider the spaces listed above.

Below, Φ always refers to a compact connected two-point homogeneous space, equipped

with the geodesic distance ϑ , normalized to take values in [0,π]. We let η denote the unique

probability measure invariant under the isometries of Φ, i.e. the normalized uniform sur-

face measure.

The first three types of projective spaces {FPd−1 : F=R,C,H} have a simple descrip-
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tion: they may be represented as the spaces of lines passing through the origin in Fd ,

xF= {xλ | λ ∈ F\{0}}. (2.16)

Observe that the isometry groups O(d), U(d), Sp(d) of the corresponding vector spaces

Fd act transitively on each space, and that the stabilizers of a line represented by x ∈ Fd

are O(d−1)×O(1), U(d−1)×U(1), and Sp(d−1)×Sp(1), respectively. Thus one has

[Wol07, p. 28] the following quotient representations:

RPd−1 = O(d)/
(

O(d−1)×O(1)
)
,

CPd−1 =U(d)/
(

U(d−1)×U(1)
)
,

HPd−1 = Sp(d)/
(

Sp(d−1)×Sp(1)
)
,

where we write O(d), U(d), Sp(d) for the groups of matrices X , over the respective alge-

bras, satisfying XX∗ = I.

Using the identification (2.16), one can associate each element of FPd−1 (F= R,C,H)

with a unit vector x ∈ Fd , ‖x‖ = 1, and we shall at times abuse notation by doing so. In

addition to the Riemannian metric ϑ , this gives us the chordal distance between points

x,y ∈Φ, defined by

ρ(x,y) =
√

1−|〈x,y〉|2,

where 〈x,y〉=
d

∑
i=1

xiyi is the standard inner product in Fd . The chordal distance ρ(x,y) is

related to the geodesic distance ϑ(x,y) by the equation

cos(ϑ(x,y)) = 1−2ρ(x,y)2 = 2|〈x,y〉|2−1.

Since the algebra of octonions is not associative, the line model of (2.16) fails, and

instead a model given by Freudenthal [Fre53] is used to describe OPd−1. It is known

[Bae02] that only two octonionic spaces exist: OP1 and OP2, however OP1 is just S8, as
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noted above.

OP2 can be described as the subset of 3× 3 Hermitian matrices Π over O, satisfying

Π2 = Π and Tr Π = 1 (see, e.g.,[CKM16, Skr17]). A metric for OP2 is then given by the

Frobenius product,

ρ(Π1,Π2) =
1√
2
‖Π1−Π2‖F =

√
1−〈Π1,Π2〉,

where 〈Π1,Π2〉 = Re Tr 1
2(Π1Π2 +Π2Π1). This is the chordal distance on OP2 whereas

the geodesic distance can be defined through sin ϑ(x,y)
2 = ρ(x,y), as in the above projective

spaces. All Π given as above may be written in the form


|a|2 ab ac

ba |b|2 bc

ca cb |c|2

 ,

where |a|2 + |b|2 + |c|2 = 1 and (ab)c = a(bc). This gives a representation of OP2 as the

quotient F4/Spin(9) [Bae02, p. 189].

One feature of spaces Φ that allows for the application of linear programming methods

is the existence of a decomposition of L2(Φ,η ,C), the space of complex-valued square-

integrable functions on Φ. Consider the representation L(g), of the isometry group G of Φ,

for L2(Φ,η ,C), defined by

L(g)φ(x) = φ(g−1x).

This representation is decomposable into an orthogonal direct sum of pairwise non-equivalent

irreducible representations Ln(g) acting on isometry invariant finite dimensional subspaces

V (α,β )
n , of continuous functions (see [Lev98, Vil]), with V (α,β )

0 being the space of constant
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functions, where α = (d−1)dimR(F)
2 −1 and

β =


α, if Φ = Sd−1;

dimR(F)
2 −1, if Φ = FPd−1

. (2.17)

These subspaces V (α,β )
n , which satisfy

L2(Φ,η ,C) =
⊕
n≥0

V (α,β )
n , (2.18)

can be chosen as the eigenspaces of the Laplace–Beltrami operator on Φ corresponding

to the n-th eigenvalue in the increasing order [Skr, Wol07]. Let Yn,k = Y (α,β )
n,k , for k =

1, . . . ,dim(V (α,β )
n ), be an orthonormal basis in V (α,β )

n . Because of the invariance of V (α,β )
n

and the two-point homogeneity of Φ, the reproducing kernel for V (α,β )
n only depends on

the distance ϑ(x,y) between points [CS99, Ven01]. Furthermore, as a function of

τ(x,y) := cosϑ(x,y),

the reproducing kernel is a polynomial P(α,β )
n of degree n, which satisfies

P(α,β )
n (τ(x,y)) =

dim(V (α,β )
n )

∑
k=1

Yn,k(x)Yn,k(y). (2.19)

Formula (2.19) is known as the addition formula, and a slight alteration of the proof of

2.2.2 tells us that the P(α,β )
n are positive definite on Φ. We note that on the sphere, τ(x,y) =

〈x,y〉. For any kernel K that depends only on the distance between points ϑ(x,y), there is

a corresponding function F : [−1,1]→ R defined by

F(τ(x,y)) := K(x,y). (2.20)
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We call F positive definite if and only if K is positive definite, and may replace K with F

in definitions such as the energy integral.

For more details on compact, connected, two-point homogeneous spaces, particularly

projective spaces, we refer the reader to [Bes78, Hel78, Hel84, Lev92, Sha01, Skr20, Skr,

Wol11, Wol07].

Jacobi Polynomials

The polynomials Cn =C(α,β )
n = P(α,β )

n

dim(V (α,β )
n )

satisfy Cn(1)= 1 and are orthogonal with respect

to the probability measure on [−1,1],

dν
(α,β ) =

1
γα,β

(1− t)α(1+ t)β dt,

where, as above, α = (d−1)dimR(F)
2 −1,

β =


α, if Φ = Sd−1;

dimR(F)
2 −1, if Φ = FPd−1,

and the normalization factor is given by

γα,β = 2α+β+1B(α +1,β +1),

where B is the beta function. The weight measure ν(α,β ) is related to integration on Φ in

the following way: for any p ∈Φ,

∫
Φ

F(τ(x, p))dη(x) = IF(η) =

1∫
−1

F(t)dν
(α,β )(t). (2.21)

The normalized Jacobi polynomials, Cn, form an orthogonal basis in L2([−1,1],ν(α,β ));

equivalently, the span of Cn(τ(x,y)), n ≥ 0, is dense in the subset of L2(Φ×Φ,η ⊗η)
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consisting of functions that depend only on the distance between x and y. In the case that

Φ is the sphere, i.e. α = β = d−3
2 , then these polynomials are known as the (normalized)

Gegenbauer/ultraspherical polynomials.

This allows expanding functions from L2([−1,1],dν(α,β )) in terms of Cn:

F(t) =
∞

∑
i=0

F̂nCn(t), where F̂n = dim(V (α,β )
n )

1∫
−1

F(t)Cn(t)dν
(α,β )(t). (2.22)

For a fixed space Φ we will not indicate the dependence of polynomials Cn = C(α,β )
n ,

the spaces Vn = V (α,β )
n , and the functions Yn,k = Y (α,β )

n,k on the indices α , β . We refer to

F̂n as the Jacobi coefficients of the function F ; the normalization Cn(1) = 1 used here is

common in the coding theory community [Sze75, Lev92].

We have already seen that Jacobi polynomials Cn are positive definite on Φ, so uni-

formly convergent series with nonnegative coefficients must be as well. Fortunately, similar

to the result of Mercer’s Theorem, if F ∈C([−1,1]) has a Jacobi expansion with nonnega-

tive coefficients, then the sum is uniformly convergent [BD19, Gan67, Lyu09].

Lemma 2.4.1. Let F ∈C([−1,1]), F(t) = ∑
∞
n=0 F̂nCn(t) with F̂n < 0 for finitely many n ∈

N0. Then the Jacobi expansion of F converges uniformly and absolutely to F on [−1,1].

With this lemma, we now have the following analogue of Corollary 2.3.4 [Boc41,

Gan67, Sch42].

Proposition 2.4.2. A function F ∈C([−1,1]) is positive definite on Φ if and only if F̂n ≥ 0

for all n≥ 0.

Proof. One direction is clear. For the other, let us assume that for some m ∈ N0, F̂m < 0.

For a fixed point p ∈ Φ, we see that Ym(x) := Cm(τ(x, p)) is in Vm and real-valued. By

orthogonality of the spaces Vn in (2.18) and the fact that Pm(τ(x,y)) = dim(Vm)Cm(τ(x,y))
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is the reproducing kernel of Vm, we have that, for dµ(x) = Ym(x)dη(x),

IF(µ) =
∫
Φ

∫
Φ

F(τ(x,y))Ym(x)Ym(y)dη(x)dη(y)

=
F̂m

dim(Vm)

∫
Φ

Ym(y)2dη(y)< 0,

so F is not positive definite.

Antipodal Symmetry

Let us consider the kernels of the form K(x,y) = G(〈x,y〉) on the unit sphere Sd−1
F for

F ∈ {R,C,H}, where 〈x,y〉 is the inner product in the ambient space. We observe that if

G(t) = G(|t|), the energy IG remains the same after averaging over unit multiples of vectors

in the support of a measure µ . Let U(F) be the set of units in F, U(F) = {c ∈ F : |c|= 1},

and ζ be the uniform measure on U(F). If one defines, for Borel sets B⊂ Sd−1
F ,

µU(F)(B) =
1

ζ (U(F))

∫
U(F)

µ(cB)dζ (c) (2.23)

then

IG(µU(F)) =
1

ζ (U(F))2

∫
Sd−1
F

∫
Sd−1
F

∫
U(F)

∫
U(F)

G(|〈cx,by〉|)dµ(x)dµ(y)dζ (c)dζ (b)

=
1

ζ (U(F))2

∫
Sd−1
F

∫
Sd−1
F

∫
U(F)

∫
U(F)

G(|〈x,y〉|)dµ(x)dµ(y)dζ (c)dζ (b)

=
∫

Sd−1
F

∫
Sd−1
F

G(|〈x,y〉|)dµ(x)dµ(y) = IG(µ).

Moreover, this tells us that for any µ,ν ∈ P(Sd−1
F ), IG(µ) = IG(ν) whenever IG(µU(F)) =

IG(νU(F)).

Now, let pF : Sd−1
F → FPd−1 be the projection of the sphere onto the projective space,
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i.e.

pF(x) = xF

as defined by (2.16). Defining F : [−1,1]→ R by

F(τ(pF(x), pF(y))) = F(τ(xF,yF)) = F(2|〈x,y〉|2−1) = G(|〈x,y〉|) = G(〈x,y〉),

for x,y ∈ Sd−1
F we then see that for any µ ∈B(Sd−1

F ),

∫
FPd−1

∫
FPd−1

F(τ(x,y))d((pF)∗µ)(x)d((pF)∗µ)(y) =
∫

Sd−1
F

∫
Sd−1
F

F(τ(pF(x), pF(y)))dµ(x)dµ(y)

=
∫

Sd−1
F

∫
Sd−1
F

G(〈x,y〉)dµ(x)dµ(y),

where (pF)∗µ is the push-forward measure defined by (pF)∗µ(B) = µ(p−1
F (B)) for all

Borel subsets of FPd−1.

This discussion shows that for G as above, a minimizing measure on the sphere for IG,

can be taken to be symmetric, and that the problem of minimizing over symmetric measures

on spheres is equivalent to minimizing energy over measures on the projective spaces. In

Chapters 6 and 7 we will use these relations in order to address optimization problems for

kernels G of this form.

2.5 The Sphere

Of the compact, connected two-point homogeneous spaces, real unit spheres Sd−1 are by

far the most well studied, and will be the space we work in most often in this paper. When

specifically working on the sphere, we will use σ , instead of η , to denote the surface mea-

sure, i.e. the normalized (d−1)-dimensional Lebesgue/Hausdorff measure on the sphere.

Like the other compact, connected, two-point homogeneous spaces, the sphere Sd−1
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may be represented as a quotient space [Wol11]. For d > 2, SO(d) acts transitively on

Sd−1 and SO(d−1)×{1} is the stabilizer of any point x ∈ Sd−1, whereas for d = 2, these

groups are O(2) and O(1)×{1} so

Sd−1 = SO(d)/
(

SO(d−1)×{1}
)

d > 2

S2 = O(2)/
(

O(1)×{1}
)
.

On the sphere, the chordal metric is simply the Euclidean metric, i.e. ρ(x,y) = ‖x−y‖,

and the geodesic distance is ϑ(x,y) = arccos(〈x,y〉), meaning that on the sphere

τ(x,y) = cos(ϑ(x,y)) = 〈x,y〉.

Since Sd−1 is a two-point homogeneous space, L2(Sd−1,σ ,C) has a decomposition

of the form (2.18). In this setting the space V
( d−3

2 , d−3
2 )

n is exactly the space of spherical

harmonics of degree n (i.e. the restrictions to Sd−1 of homogeneous polynomials, of degree

n, on Rd that are in the kernel of the Euclidean Laplacian) [Sha01]. Clearly, any complex-

valued spherical harmonic of degree n must be of the form p(x) + iq(x), where p and

q are real-valued spherical harmonics of degree n. Thus, each V
( d−3

2 , d−3
2 )

n , and thereby

L2(Sd−1,σ ,C), has an orthonormal basis of real-valued spherical harmonics. Denoting the

space of real-valued spherical harmonics of degree n on Sd−1 by H d
n , we see that this

means that

L2(Sd−1,σ) =
⊕
n≥0

H d
n

and that for all n ∈ N0 and d ≥ 2,

dim(V
( d−3

2 , d−3
2 )

n ) = dim(H d
n ) =

(
n+d−1

n

)
−
(

n+d−3
n−2

)
.

Our addition formula (2.19) now tells us that for all n ∈ N0, if Yn,1, ...,Yn,dim(H d
n ) is an
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orthonormal basis of H d
n , then

C
( d−3

2 , d−3
2 )

n (〈x,y〉) = 1
dim(H d

n )

dim(H d
n )

∑
j=1

Yn, j(x)Yn, j(y).

In certain instances, it will be more convenient to use the standard Gegenbauer/ultraspherical

polynomials instead of the normalized ones.

Gegenbauer Polynomials

For a parameter λ > 0, consider the measure

dwλ (t) = dν
(λ− 1

2 ,λ−
1
2 )(t) =

Γ(λ +1)
√

πΓ(λ + 1
2)
(1− t2)λ− 1

2 dt

on the interval [−1,1]. For the rest of this text, we will assume that λ = d−2
2 , so that

dwλ (t) =
Ad−2

Ad−1
(1− t2)

d−3
2 dt,

where Ad−1 =
2πd/2

Γ(d/2) is the (d− 1)-dimensional Hausdorff surface measure of Sd−1. The

weighted measure wλ is related to integration on the sphere Sd−1 in the following way: for

a unit vector p ∈ Sd−1,

∫
Sd−1

F(〈x, p〉)dσ(x) = IF(σ) =

1∫
−1

F(t)dwλ (t) (2.24)

where, as before, σ is the normalized surface measure on the sphere Sd−1.

The Gegenbauer polynomials Cλ
n , n ≥ 0, as a special case of the Jacobi polynomials,

clearly form an orthogonal basis of L2([−1,1],ν(λ− 1
2 ,λ−

1
2 )) = L2([−1,1],wλ ). However,

in this instance, we are not normalizing these polynomials, which means that we must

properly adjust our formulae from Section 2.4. Every function F ∈ L1([−1,1],wλ

)
has a
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Gegenbauer (ultraspherical) expansion

F(t)∼
∞

∑
n=0

F̂(n,λ )
n+λ

λ
Cλ

n (t) t ∈ [−1,1] (2.25)

where

F̂(n,λ ) :=
1

Cλ
n (1)

1∫
−1

F(t)Cλ
n (t)dwλ (t). (2.26)

For F ∈ L2([−1,1],wλ

)
this expansion converges to F in the L2 sense.

In the case of S1, when λ = 0, the relevant polynomials are the Chebyshev polynomials

of the first kind

Tn(t) = cos
(
narccos(t)

)
=

1
2

lim
λ→0

n+λ

λ
Cλ

n (t), (2.27)

and for S2, the polynomials are appropriately scaled Legendre polynomials [Sze75].

For any n ∈ N0 and d ≥ 2, let {Yn, j}
dim(H d

n )
j=1 be any orthonormal basis in H d

n . The

Gegenbauer polynomials are related to the spherical harmonics by the following addition

formula
dim(H d

n )

∑
j=1

Yn, j(x)Yn, j(y) =
n+λ

λ
Cλ

n (〈x,y〉) for all x,y ∈ Sd−1. (2.28)

Comparing this to the normalized Gegenbauer polynomials C
( d−3

2 , d−3
2 )

n , we see that for

all n ∈ N0 and d ≥ 2,

F̂nC
( d−3

2 , d−3
2 )

n (t) = F̂(n,λ )
n+λ

λ
Cλ

n (t) t ∈ [−1,1],

as one would expect. Thus, Lemma 2.4.1 and Proposition 2.4.2 hold with the Gegenbauer

expansion (2.25). Likewise, all results in this text that are given for general compact, con-

nected, two-point homogeneous spaces using Jacobi expansions (with normalized Jacobi

polynomials) hold on the sphere with the standard Gegenbauer polynomials.

Expanding in terms of standard Gegenbauer polynomials will be more convenient for

formulating various results in this text when working on the sphere, such as the Funk-Hecke
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formula, which clearly follows from orthogonality, (2.25), and the addition formula (2.28).

Theorem 2.5.1. Let F ∈ L2([−1,1],wλ ). Then for every Yn ∈H d
n ,

∫
Sd−1

F(〈x,y〉)Yn(y)dσ(y) = F̂(n,λ )Yn(x). (2.29)

We complete this section with the following corollary of Proposition 2.3.6, where our

decision to use standard Gegenbauer polynomials simplifies the result.

Corollary 2.5.2. Let F ∈C([−1,1]). Then F is positive definite on Sd−1 if and only if there

exists some f ∈ L2([−1,1],wλ ) such that

F(〈x,y〉) =
∫

Sd−1

f (〈x,z〉) f (〈z,y〉)dσ(z). (2.30)

If such a function f exists, then for all n ∈ N0, F̂(n,λ ) =
(

f̂ (n,λ )
)2

.

Proof. For each n ∈ N0, let Yn,1, ...,Yn,dim(H d
n ) be an orthonormal basis of H d

n . Then we

know that {Yn,k : n∈N0,k ∈ {1, ...,dim(H d
n )}} forms an orthonormal basis of L2(Sd−1,σ)

which consists of continuous eigenfunctions of the linear integral operator TK,σ , with

K(x,y) = F(〈x,y〉) for all x,y ∈ Sd−1. From (2.25) and (2.28), we know that

F(〈x,y〉) =
∞

∑
n=0

F̂(n,λ )
dim(H d

n )

∑
k=1

Yn,k(x)Yn,k(y).

Proposition 2.3.6 then tells us that F is positive definite if and only if there exists some

k ∈ L2(Sd−1×Sd−1,σ ×σ) such that

F(〈x,y〉) =
∫

Sd−1

k(x,z)k(z,y)dσ(z), (2.31)
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and that if such a k exists, then

k(x,y) =
∞

∑
n=0

dim(H d
n )

∑
k=1

κn,kYn,k(x)Yn,k(y),

with κ2
n,k = F̂(n,λ ). Moreover, if such a k exists, then there are infinitely many choices of

k satisfying (2.31), as we may change the sign of each κn,k. Thus, if there exists some k

satisfying (2.31), then we may choose its coefficients such that

k(x,y) =
∞

∑
n=0

√
F̂(n,λ )

n+λ

λ
Cλ

n (〈x,y〉)

meaning that k only depends on the distance between x and y, and so can be expressed

by a function f ∈ L2([−1,1],wλ ), i.e. f (t) = ∑
∞
n=0

√
F̂(n,λ )n+λ

λ
Cλ

n (t). Our claim now

follows.

For more background information on spherical harmonics, Gegenbauer polynomials,

and harmonic analysis on the sphere, we refer the reader to [DX13, Mül66, Gro96].

2.6 Designs

We now treat the topic of designs in the compact, connected, two-point homogeneous

spaces Φ. Any finite (non-empty) set, also known as a code, C ⊂Ω is characterized by its

distance set

A (C ) = {τ(x,y) : x,y ∈ C }. (2.32)

We note that A is the set of cosines of geodesic distances between points, rather than the

distances themselves, which is more convenient for our purposes. The degree of C is the

number of distinct distances that occur between distinct elements of C , i.e. |A (C )\{1}|.

Codes in two-point homogeneous spaces, particularly the sphere, have a rich history, and

have been the basis of several famous optimization problems. For instance, for any A ⊆
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[−1,1), we call C ⊂ Φ an A-code if A (C ) ⊆ A∪{1}. Often, one is interested in finding

upper bounds of the cardinality |C | of A-codes, and determining extremal configurations

with respect to such bounds. On Sd−1, for A = [−1,b], for some b < 1, this is equiva-

lent to the classical problem of placing non-overlapping spherical caps of angular radius

1
2 arccos(b) on the sphere [DGS77, Ran55]. In particular, when A = [−1,π/3], this be-

comes a problem of finding the kissing number of the sphere, i.e. the maximum number of

non-overlapping balls in Rd of radius r that can all touch a single ball of radius r, which

is only known for d ∈ {1,2,3,4,8,24} [SvdW53, Lev79, OS79, Mus08]. Another famous

optimization problem is the classification of tight designs.

A code C ⊂Φ is called a t-design if

1
|C | ∑

x∈C
p(x) =

∫
Ω

p(x)dη(x) = 0 ∀p ∈
t⋃

n=1

Vn. (2.33)

A relaxation of the above identity allows the configuration to be weighted, so that the

equality

∑
x∈C

w(x)p(x) =
∫
Ω

p(x)dη(x) = 0 ∀p ∈
t⋃

n=1

Vn (2.34)

holds for some weights {w(x)}x∈C ⊂ R≥0, satisfying ∑x∈C w(x) = 1. Such weighted for-

mulas are called cubature formulas or weighted t-designs. We will make a slight abuse of

terminology, and refer to the measure

µC ,w = ∑
x∈C

w(x)δx (2.35)

as a weighted t-design if C , with weight function w, is a weighted t-design. If w(x) = 1
|C |

for all x ∈ C , i.e. C is a t-design, we shall denote our measure µC := µC ,w, and refer to

it as a t-design. We note that our definition implies that if C is a weighted t-design with
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weight function w, then

∑
x,y∈C

w(x)w(y)Cn(τ(x,y)) = 0 for 1≤ n≤ t.

The strength of a (weighted) design is the maximum value of t for which identity (2.33) (or

(2.34), accordingly) holds.

The concept of spherical designs was originally introduced in 1977 by Delsarte, Goethal,

and Seidel in [DGS77], in which they determined a lower bound on N(Sd−1, t), the min-

imum number of points necessary to construct a spherical t-design, and provided several

important examples of designs. The existence of spherical t-designs for any d ≥ 2 and

t ∈ N was proved in 1984 by Seymour and Zaslavsky in [SZ84]. However, this proof is

nonconstructive, and gives no indication of the size of N(Sd−1, t). Various upper bounds of

N(Sd−1, t) were given in [WV91, Baj92, KM93, BV10], culminating in the results of Bon-

darenko, Radchenko, and Viazovska in [BRV13,BRV15]. In their works, they showed that

not only is N(Sd−1, t) on the order of td−1 ( the lower bound given in Lemma 2.6.4), but

for large enough N, relative to t and d, well separated spherical t-designs of size N always

exist. This solved a long-standing conjecture of Korevaar and Meyers [KM93].

Theorem 2.6.1 ([BRV13,BRV15]). For all d ≥ 2 there exists some Cd > 0 and bd > 0 such

that for all N ≥Cdtd−1, there exists a spherical t-design C = {z1, ...,zN} ⊂ Sd−1 such that

||zi− z j||> bdN−1/(d−1) for i 6= j.

The concept of codes and designs was generalized to projective spaces (as well as other

spaces) in the 1980’s by Neumaier, Bannai, and Hoggar [BH85, BH89, Hog82a, Hog82b,

Neu81], among others, though they were studied previously (see, e.g., [DGS75]). In the

following decades, a general theory was developed, a good overview of which, as well as

additional background, can be found in, for instance [BB09, Lev92, Lev98, Lev98]. Con-

cerning the relationship between t-designs and classical designs in ranked partially ordered

sets, see [Del76, Sta81, Sta86].
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The equalities (2.33) and (2.34) show that (weighted) designs can provide a good ap-

proximation to the whole space Φ, and the strength of the design characterizes the degree

of such an approximation. This makes the problem of finding the minimum cardinality

of a (weighted) design of a certain strength of significant interest in factorial experiments,

cryptography, complexity theory, and calculation theory [AGHP92, CS99, GMS74, Rao47,

Sti93].

Linear programming bounds imply exact constraints on the size of designs, in partic-

ular giving the cardinality of tight t-designs, which have the smallest possible number of

pairwise distances between their elements, for a design of strength t. The exact definition

may be given as follows.

Definition 2.6.2. A code C ⊂Ω is called a tight t-design if one of the following conditions

is satisfied.

(i) C is a design of strength t = 2m−1 and degree m, and −1 ∈A (C ), i.e. there is at

least one pair of points diameter apart;

(ii) C is a design of strength t = 2m and degree m.

Often, tight designs are defined by their cardinality rather than their degree. Though

the latter is of greater use for our needs in this paper, it is worth connecting the two def-

initions and showing the bounds on cardinality. Let C ⊂ Φ be code of degree m. Set

e = |A (C ) \ {−1}| − 1. The annihilating polynomial of a configuration is defined by

Ann(C ) := Πa∈A (C )\{1}(x− a). For a positive number t, let (t)k = t(t + 1) . . .(t + k− 1)

be the rising factorial and (t)k = t(t− 1) . . .(t− k+ 1) be the falling factorial. We define,

for k ∈ N

Rk,λ (x) :=
k

∑
j=0

j+λ

λ
Cλ

j (x), (2.36)

Qk,λ (x) :=
bk/2c

∑
j=0

k−2 j+λ

λ
Cλ

k−2 j(x), (2.37)
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and

T (α,β )
m,e :=

(α +β +2)m+e

(β +1)me!

e

∑
j=0

(−1) j (m+β ) j

(m+ e+α +β +1) j

(x+1
2

)e− j
. (2.38)

The following lemmas from [DGS77] now let us relate the degree, strength, and cardi-

nality of spherical designs, and provide us with information about the distance set A (C )

of tight designs.

Lemma 2.6.3. Let C ⊂ Sd−1 be code of degree m such that |C |= N.

(i) If C is a design of strength t, then t ≤ 2m and N ≤ Rm,λ (1). Equality holds in either

of these inequalities if and only if C is a tight 2m-design

(ii) If C is an antipodal design of strength t, then t ≤ 2m− 1, and N ≤ 2Qm−1,λ (1).

Equality holds in either of these inequalities if and only if C is a tight (2m− 1)-

design.

Lemma 2.6.4. Let C ⊂ Sd−1 be a t-design such that |C |= N.

(i) If t = 2k, then

N ≥ Rk,λ (1) =
(

d− k−1
d−1

)
+

(
d− k−2

d−1

)
. (2.39)

Equality holds (i.e. C is a tight spherical (2k)-design) if and only if A (C ) is exactly

the set of roots of (1− x)Rk,λ (x).

(ii) If t = 2k−1, then

N ≥ 2Qk−1,λ (1) = 2
(

d− k−2
d−1

)
. (2.40)

Equality holds (i.e. C is a tight spherical (2k− 1)-design) if and only if A (C ) is

exactly the set of roots of (1− x2)Ck−1,λ (x).

Similar results exist for the projective settings [Hog82a].

Lemma 2.6.5. Let C ⊂ FPd−1 be a code of degree m such that |C |= N.
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(i) We have

N ≤ T (α,β )
m,e (1) =

(α +β +2)m(α +2)e

(β +1)me!
(2.41)

with equality if and only if Ann(C )(x) =
(

x+1
2 )m−eT (α,β )

m,e (x).

(ii) If C is a design of strength t, then t ≤ m+ e, and equality holds (i.e. C is a tight

t-design) if and only if equality holds in (2.41).

The bounds on cardinality one achieves from these results were generalized to weighted

designs by Levenshtein in [Lev98].

Theorem 2.6.6. Let (C ,w) be a weighted t-design in Φ. Then with k = b t+1
2 c and ε =

2k− t, we have the following:

1. If Φ = Sd−1, then

|C | ≥
(

d + k−1− ε

d−1

)
+

(
d + k−2

d−1

)
. (2.42)

2. If Φ = FPd−1, then

|C | ≥ (α +β +2)k(α +2)k−ε

(β +1)k(k− ε)!
. (2.43)

In both cases, equality holds if and only if w(x) = 1
|C | for all x∈C and C is a tight t-design.

Note that this means that any weighted tight design is a design (known also as a “sim-

ple” design), a result that was shown for the sphere in [Tay95]. In addition, observe

that from our above lemmas, it is clear that if C1 and C2 are tight t-designs on Φ, then

A (C1) = A (C2) and |C1| = |C2|. However, tight designs, generally, are not unique (not

even up to unitary equivalence). This is known to be true in particular for the tight projec-

tive 2-designs on CP2, through the characterization of all such designs in [Szö].

Table 2.1 provides a list of known tight spherical designs, as well as the 600-cell, which

is not a tight design, but will be of interest in Section 6.3. Tight spherical 1-designs are
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clearly just pairs of antipodal points, and tight 2-designs and 3-designs are precisely the

vertices of regular simplices and cross polytopes, respectively. On the circle S1, tight t-

designs exist for all t ∈ N: they are simply the vertices of the regular (t + 1)-gon. For

d ≥ 3 and t ≥ 4 there are eight tight spherical designs known. Aside from the icosahe-

dron, these designs do not come from regular polytopes. Instead, several are derived from

the E8 root lattice in R8 and the Leech Lattice Λ24 in R24, objects that provide optimal

spherical packings in their respective dimensions [Via17, CKM+17]. The 240-point and

196560-point configurations are the minimal (nonzero) vectors in those lattices. Each ar-

rangement labeled “kissing” is the kissing configuration of the set below it: by centering

non-overlapping congruent spherical caps of maximal height at each of the points in a given

configuration, one arrives at a “sphere packing” on the sphere, and the resulting points of

tangency on a given cap form a spherical code in a lower dimensional space. Some of

the kissing configurations are of independent interest. The configuration of 240 points

produces a set of 120 equiangular lines passing though the origin in R7, and the config-

uration of 27 points forms the Schläfli arrangement. The remaining two designs are the

configuration of 552 points in R23 which comes from an equiangluar arrangement of 276

lines described by the unique regular two-graph on 276 vertices, and the resulting kissing

configuration, which is a 275 point arrangement associated with the McLaughlin group in

S21.

Tight spherical designs with d ≥ 3 and t ≥ 4 may only exist for t = 4,5, and 7 with

the one exception of the spherical 11-design formed by the Leech lattice minimal vectors

[BD79, BD80]. The problem of finding tight spherical 5-designs is the same as that of

finding maximal equiangular tight frames, and it is known that existence of a tight spherical

5-design in Sd−1 is possible only for d = 1,2,3 and for dimensions of the form d = (2k+

1)2−2, where k≥ 1; see [BD79,BD80,DGS77,LS73] for details on how these conditions

arise. A direct correspondence with such spherical designs and regular graphs has long

been recognized [Sei73], and, in connection, it is known that for infinitely many values of
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k, a tight spherical 5-design cannot exist in dimension d = (2k+1)2−2 [BMV04,Mak02].

Table 2.1: A list of known tight spherical designs (with the 600-cell). Here M denotes the
strength of the design, d the dimension of the ambient space Rd , and N is the size of the
design.

d N M Inner products Name

d 2 1 ±1 Pair of antipodal points
d d +1 2 −1/d,1 Regular simplex
d 2d 3 0,±1 Cross-polytope
2 N N−1 cos(2 jπ/N), 0≤ j ≤ N/2 Regular N-gon
3 12 5 ±1/

√
5,±1 Icosahedron

4 120 11 0,(±1±
√

5)/4,±1/2,±1 600-cell
6 27 4 −1/2,1/4,1 Kissing/Schläfli
7 56 5 ±1/3,±1 Kissing/Equiangular lines
8 240 7 0,±1/2,±1 E8 root system

22 275 4 −1/4,1/6,1 Kissing/McLaughlin
23 552 5 ±1/5,±1 Equiangular lines
23 4600 7 0,±1/3,±1 Kissing
24 196560 11 0,±1

4 ,±
1
2 ,±1 Leech Lattice minimal vectors

Table 2.2 lists all known tight projective designs, except those for the spaces FP1 , as

those are congruent to real spheres. Identifying tight projective designs is simple in the

real setting. Tight spherical designs of odd strength must be centrally symmetric [DGS77],

and by choosing points from each antipode in an odd tight design, one arrives at a real

projective tight design. Thus, all tight designs of odd strength in Table 2.1 correspond to

entries in Table 2.2.

For the other projective spaces, the vertices of a cross-polytope (i.e. an orthonormal ba-

sis in the projective space) always provide a tight 1-design, as they did in RPd−1. However,

unlike the real case, it is known that no tight t-designs exist in the complex or quaternionic

setting whenever t ≥ 4 and d ≥ 3 [BH89, Hog89, Lyu09]. In the complex setting, tight

2-designs, also known as symmetric, informationally complete, positive operator-valued

measures (SIC-POVMs), are known to exist for d ≤ 16, d = 19,24,28,35,48, and numer-

ical experiments suggest that they may exist in every dimension [ABB+14, RBKSC04,

SG10, Zau11]. With exception of the (3,15) quaternionic and (3,27) octonionic designs
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from [CKM16], explicit constructions are readily found for the other designs mentioned in

Table 2.2 [Hog82a].

Table 2.2: A list of parameters for the known to exist projective tight designs (besides
designs in FP1 for F 6= R). Here M denotes the strength of the design, d the dimension of
the ambient space Fd , and N is the size of the design. For SIC-POVMs, the (∗) indicates
that these exist for certain values of d, and may or may not exist for all values.

d N M |〈x,y〉|2 F Name
d d +1 1 0,1 R Cross-polytope/ONB
2 N N−1 cos2(π j/N), 1≤ j ≤ N R Regular 2N-gon
3 6 2 1/5,1 R Icosahedron
7 28 2 1/9,1 R Kissing configuration for E8
8 120 3 0,1/4,1 R Roots of E8 lattice

23 276 2 1/25,1 R Tight simplex
23 2300 3 0,1/9,1 R Kissing configuration for Λ24
24 98280 5 0,1/16,1/4,1 R Minimal vectors of Λ24

d d +1 1 0,1 C Cross-polytope/ONB
d(∗) d2 2 1/(d +1),1 C SIC-POVM

4 40 3 0,1/3,1 C Eisenstein structure on E8
6 126 3 0,1/4,1 C Eisenstein structure on K12

d d +1 1 0,1 H Cross-polytope/ONB
3 15 2 2/7,1 H Tight simplex
5 165 3 0,1/4,1 H Quaternionic reflection group
3 d +1 1 0,1 O Cross-polytope/ONB
3 27 2 2/13,1 O Tight simplex
3 819 5 0,1/4,1/2,1 O Generalized hexagon

of order (2,8)

A weaker property of a design is sharpness, which will not play a role here. The pa-

per [CK07] proves that sharp designs, and tight designs in particular, are minimizers for

discrete energy minimization problems with absolutely monotone kernels.
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Chapter 3

Elementary Aspects of Energy

Optimization

We now provide several results which connect properties of the kernel K, the functional IK ,

and the minimizers of this continuous energy. Many seem to be new, and those which are

known do not appear to have been previously collected in a single text, though [BHS19,

Chp. 4] provides a similar exposition for lower semi-continuous kernels on compact sets.

In Sections 3.1, 3.2, and 3.3, we present these results for general compact metric spaces.

Section 3.1 discusses the equivalences and implications which hold without requiring that

the potential U µ

K is constant or the supp(µ)=Ω for some probability measure µ . Bounds on

the mutual energy, the convexity of IK , and a condition for the uniqueness of the equilibrium

measure are addressed in this section, as well as two results that will be particularly useful

in later chapters: If µ is a local minimizer of IK , then on supp(µ), U µ

K is constant and K

is positive definite modulo a constant. In Section 3.2, we assume that µ is K-invariant, i.e.

that the potential U µ

K is constant on all of Ω. With this assumption, we find that IK , which is

a quadratic functional, behaves linearly about µ , that the conditionally positive definiteness

of K is equivalent positive definiteness modulo a constant, and that if µ is a local minimizer,

then it is in fact a global minimizer. In Section 3.3 we make an additional assumption:
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that µ has full support. This final assumption allows us to equate K being conditionally

positive definite to µ being a global minimizer of IK and we collect several conditions on

K, IK , or µ that are equivalent to K being conditionally positive definite, positive definite,

or conditionally strictly positive definite, Theorems 3.3.1, 3.3.2, and 3.3.3, respectively.

In Sections 3.4 and 3.5 we discuss energy on two-point homogeneous spaces and, more

specifically, the sphere. For these spaces, for any isometry invariant kernel F , one is often

interested in determining if the surface measure η is a minimizer of IF . Since η naturally

has full support and satisfies Uη

F (x) = IF(η) for all x ∈ Φ, our results from the previous

sections all apply. In these sections, we discuss how these results relate to the Jacobi or

Gegenbauer expansions of F , and provide the results that we will make greatest use of later

in the text.

3.1 Positive Definite Functions

We start by discussing some properties and characterizations of (conditional) positive defi-

niteness related to the behavior of the energy functionals and their minimizers.

Positive Definiteness and Inequalities for Mixed Energies

We first make the observation that the (conditional) positive definiteness of the kernel can

be characterized by the inequalities for mixed energies in terms of arithmetic or geometric

means. While the validity of such inequalities for positive definite kernels is well known,

see e.g. Chapter 4 of [BHS19], their sufficiency doesn’t seem to have appeared in the

literature. We summarize these facts in the following two lemmas. The first one connects

conditional positive definiteness to the arithmetic mean inequality.

Lemma 3.1.1. Suppose K is a kernel on Ω2. Then the following conditions are equivalent:

1. K is conditionally positive definite.

48



2. For every pair of Borel probability measures µ1 and µ2 on Ω, the mutual energy

IK(µ1,µ2) satisfies

IK(µ1,µ2)≤
1
2
(
IK(µ1)+ IK(µ2)

)
. (3.1)

3. Inequality (3.1) is satisfied for any pair of signed Borel measures of total mass one.

If K is conditionally strictly positive definite, then equality in 3.1 holds if and only if

µ1 = µ2 on Borel subsets of Ω.

Proof. Suppose that K is conditionally positive definite. Then for any µ1,µ2 ∈ P̃(Ω), µ1−

µ2 ∈Z (Ω), so

0≤ IK(µ1−µ2) = IK(µ1)−2IK(µ1,µ2)+ IK(µ2),

which proves (3.1). Thus, (1) implies (3), which in its turn obviously implies (2).

Now assume condition (2), i.e. that (3.1) holds for all µ1,µ2 ∈ P(Ω). For any µ ∈

Z (Ω), there exists c≥ 0 and probability measures µ1,µ2 ∈ P(Ω) such that ν = c(µ1−µ2).

We then have that

IK(µ) = c2
(

IK(µ1)−2IK(µ1,µ2)+ IK(µ2)
)
≥ 0,

so K must be conditionally positive definite.

Let us now assume that K is conditionally strictly positive definite. Equality clearly

holds in (3.1) if µ1 = µ2 on all Borel sets of Ω. If, however, the restriction of µ1 to

Borel subsets of Ω does not coincide with that of µ2, the measure µ1− µ2 is nonzero

on some Borel subset of Ω, and the conditionally strict positive definiteness of K gives us

that IK(µ1−µ2)> 0, making (3.1) a strict inequality.

The second lemma is very similar: it shows that positive definiteness is equivalent to

the geometric mean inequality for the mixed energy.
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Lemma 3.1.2. Suppose K is a kernel on Ω2. Then K is positive definite if and only if for

all µ1,µ2 ∈ P(Ω), the mutual energy IK(µ1,µ2) satisfies

IK(µ1,µ2)≤
√

IK(µ1)IK(µ2), (3.2)

and IK(µ1) ≥ 0. If K is strictly positive definite, then equality in (3.2) holds if and only if

µ1 = µ2 on Borel subsets of Ω.

Observe that, just like in Lemma 3.1.1, we could replace P(Ω) with P̃(Ω).

Proof. Suppose that K is positive definite. Then for any t ∈R and µ1,µ2 ∈P(Ω), tµ1−µ2 ∈

M (Ω) so

g(t) := t2IK(µ1)−2tIK(µ1,µ2)+ IK(µ2) = IK(tµ1−µ2)≥ 0.

Thus the discriminant 4IK(µ1,µ2)
2− 4IK(µ1)IK(µ2) of the quadratic polynomial g(t) is

nonpositive, which yields (3.2).

Suppose instead that (3.2) holds for all probability measures. For any µ ∈M (Ω), there

exists a,b≥ 0 and µ1,µ2 ∈ P(Ω) such that µ = aµ1−bµ2. We then have that

IK(µ) = a2IK(µ1)−2abIK(µ1,µ2)+b2IK(µ2)≥ (a
√

IK(µ1)−b
√

IK(µ2))
2 ≥ 0,

implying that K is positive definite.

If K is strictly positive definite and equality holds in (3.2), then g(t) has a unique root

t ′. Since K is strictly positive definite, we have µ1 = t ′µ2 on Borel subsets of Ω and since

µ1,µ2 ∈ P(Ω), we see that t ′ = 1 and µ1 = µ2.

Finally, we use the arithmetic mean inequality of Lemma 3.1.1 to show that minimizers

are unique for strictly conditionally positive definite kernels.
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Theorem 3.1.3. Suppose that K is conditionally strictly positive definite. Then IK has a

unique minimizer (either in P(Ω) or in P̃(Ω)).

Proof. Suppose that µ1,µ2 ∈ P(Ω) (the argument for P̃(Ω) is identical) are equilibrium

measures of IK , i.e. energy minimizers. Due to Lemma 3.1.1 the probability measure

µ = 1
2(µ1 +µ2) satisfies

IK(µ) =
1
4

IK(µ1)+
1
2

IK(µ1,µ2)+
1
4

IK(µ2)≤
1
2

IK(µ1)+
1
2

IK(µ1) = IK(Ω). (3.3)

Thus, µ must also be a minimizer of IK , which means that 2IK(µ1,µ2) = IK(µ1)+ IK(µ2).

By Lemma 3.1.1, µ1 = µ2 on Borel subset of Ω, which proves the claim.

Positive Definiteness and Convexity of the Energy Functional

Convexity often plays an important role in optimization problems, so it is natural to sus-

pect that the convexity of energy functionals relates to energy minimization, and it is well

known that conditional positive definiteness does as well. Therefore, it is not surprising that

the two notions are related. We shall demonstrate that they are, in fact, equivalent. This

equivalence seems to have been overlooked in most of the literature. The proof presented

below has appeared in the author and coauthors’ recent paper [BFG+a].

Definition 3.1.4. Let K : Ω×Ω→ R be a kernel. We say that IK is convex at µ ∈ P(Ω) if

for every ν ∈ P(Ω) there exists some tν ∈ (0,1], such that for all t ∈ [0, tν)

IK((1− t)µ + tν)≤ (1− t)IK(µ)+ tIK(ν). (3.4)

We say IK is convex on P(Ω) if inequality (3.4) holds for every µ , ν ∈P(Ω) and all t ∈ [0,1].

We observe that convexity of IK on P(Ω) is equivalent to the fact that IK is con-

vex at all µ ∈ P(Ω). Indeed, if (3.4) fails for some µ , ν ∈ P(Ω), then the polynomial

f (t) = IK((1− t)µ + tν) is not convex on the interval [0,1], i.e. f ′′(t) < 0 on some
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subinterval [a,b] ⊂ [0,1]. But in this case, one can easily see that IK fails to be convex

at µa = (1−a)µ +aν .

We first show that convexity is equivalent to the arithmetic mean inequality (3.1) for

mixed energies.

Lemma 3.1.5. The energy functional IK is convex at µ ∈ P(Ω) if and only if for all ν ∈

P(Ω),

IK(µ,ν)≤
1
2
(
IK(µ)+ IK(ν)

)
. (3.5)

Consequently, IK is convex on P(Ω) if and only if inequality (3.5) holds for all µ,ν ∈ P(Ω).

Proof. Let ν ∈ P(Ω) and assume that the arithmetic mean inequality (3.5) holds. Then for

all t ∈ [0,1],

IK((1− t)µ + tν) = (1− t)2IK(µ)+2(1− t)tIK(µ,ν)+ t2IK(ν)≤ (1− t)IK(µ)+ tIK(ν).

(3.6)

So IK is indeed convex at µ .

For the converse direction, assume that IK is convex at µ . Then for any ν ∈ P(Ω) and

t > 0 sufficiently small, i.e. t ∈ (0, tν), inequality (3.6) holds, so

2(1− t)tIK(µ,ν)≤ t(1− t)(IK(µ)+ IK(ν)).

Dividing by t(1− t), we obtain the arithmetic mean inequality (3.5).

Lemmas 3.1.1 and 3.1.5 together clearly imply the desired equivalence.

Proposition 3.1.6. Let K : Ω×Ω→R be a kernel. Then K is conditionally positive definite

if and only if IK is convex on P(Ω).
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Minimizing Measures: Basic Potential Theory

It is well known that the behavior of the minimizing measures is closely connected to

the behavior of the potential of the kernel with respect to the minimizing measure. For a

detailed account of the topic, we refer the reader to [BHS19] book. The following simple

statement is classical, see e.g. [Bjö56]. We provide its proof for completeness.

Theorem 3.1.7. Suppose that µ is a minimizer of IK over P(Ω). Then U µ

K (x) = IK(µ) on

supp(µ) and U µ

K (x)≥ IK(µ) on Ω.

Proof. Let ν ∈Z (Ω) such that µ(A)+εν(A)≥ 0 for all Borel subsets A⊆Ω and 0≤ ε ≤

1. This clearly means that µ + εν ∈ P(Ω), so

IK(µ)≤ IK(µ + εν) = IK(µ)+2εIK(µ,ν)+ ε
2IK(ν).

Thus, for 0≤ ε ≤ 1,

0≤ ε (2IK(µ,ν)+ εIK(ν)) .

This means that IK(µ,ν)≥ 0.

Suppose, indirectly, that there exist a,b ∈ R, z ∈ supp(µ), and y ∈Ω such that

a =U µ

K (z)>U µ

K (y) = b.

Let B be a ball centered at z, small enough so that y 6∈ B and the oscillation of U µ

K (x) (i.e.

maxx∈BU µ

K (x)−miny∈BU µ

K (y)) is at most a−b
2 , and let m = µ(B). Let ν be defined by

ν(A) = mδy(A)−µ(A∩B). (3.7)

Then

IK(µ,ν) =U µ

K (y) ·m−
∫
B

U µ

K (x)dµ(x)≤ bm−
(

a− a−b
2

)
m < 0,
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which is a contradiction. Thus, if U µ

K (z) = a for some z ∈ supp(µ), then U µ

K (x)≥ a for all

x ∈Ω. Our claim then follows.

Definition 3.1.8. We shall say that µ is a local minimizer of IK if it is a local minimizer in

every direction, in other words, if for each ν ∈ P(Ω), there exists τν ∈ (0,1] such that for

all t ∈ [0,τν ] we have

IK
(
(1− t)µ + tν

)
≥ IK(µ).

Observe that this definition differs from the definition of local minimizers with respect

to some metric, such as the Wasserstein d∞ metric or the total variation norm (the difference

is similar to that between the Gateaux and Fréchet derivatives). In particular, local mini-

mizers with respect to total variation norm are also local minimizers in the above sense, but

not vice versa. In the present work, we shall always use the words local minimizers in the

sense of Definition 3.1.8. The following proposition provides a relation between the local

and global minimizers.

Analyzing the proof of Theorem 3.1.7, we find that for ν defined in (3.7), we can write

µ +εν = (1−ε)µ +εν̃ with ν̃ = µ +ν ∈ P(Ω). Hence, one arrives at a contradiction even

if µ is just a local minimizer.

Corollary 3.1.9. The statement of Theorem 3.1.7 remains true if we only assume that µ is

a local (not global) minimizer of IK .

As we shall see in Theorem 3.2.10, under some additional conditions, in particular, if

K is conditionally positive definite, the statement of Theorem 3.1.7 can be reversed.

Energy Minimizers and Hilbert–Schmidt Operators

There is a close relation between energy minimizers and the properties of the associated

Hilbert–Schmidt operator TK,µ in L2(Ω,µ). We have the following statement.

Lemma 3.1.10. Let K be a kernel on Ω×Ω and assume that µ ∈ P(Ω) is a global or local

minimizer of IK with IK(µ)≥ 0. Then the Hilbert–Schmidt operator TK,µ is positive.
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Proof. We start by observing that if µ is a (global or local) minimizer of IK , then the

constant function 1Ω is an eigenfunction of TK,µ in L2(Ω,µ). Indeed, according to Theorem

3.1.7 or Corollary 3.1.9, for each x ∈ supp(µ),

TK,µ1Ω(x) =
∫
Ω

K(x,y)dµ(y) =U µ

K (x) = IK(µ)1Ω(x). (3.8)

Assume, indirectly, that TK,µ is not positive. By Lemma 2.3.1, TK,µ is compact and

self-adjoint, so there exists an eigenfunction φ such that TK,µφ = λφ with λ < 0. Since φ

is continuous, and therefore bounded, on supp(µ), we have that for sufficiently small |t|,

the measure

µt = (1+ tφ)µ

is positive. As we noted above, 1Ω is an eigenfunction of TK,µ corresponding to the eigen-

value IK(µ)≥ 0. Clearly, then, 1Ω and φ are orthogonal, so

µt(Ω) =
∫
Ω

(1+ tφ(x))dµ(x) = µ(Ω) = 1

and for s > 0

IK((1− s)µ + sµt) = IK(µst)

=
∫
Ω

∫
Ω

K(x,y)(1+ stφ(x))(1+ stφ(y)dµ(x)dµ(y)

= IK(µ)+λ t2
∫
Ω

|φ(x)|2dµ(x)< IK(µ)

which contradicts the (local) minimality of µ over probability measures.

Recall that according to Lemma 2.3.1, the operator TK,µ is positive if and only if K is

positive definite on the support of µ . If the condition IK(µ) ≥ 0 in Lemma 3.1.10 is not

satisfied, we can replace K by K′(x,y) =K(x,y)−IK(µ), which does not affect energy min-
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imizers. Then IK′(µ) = 0, and hence, Lemma 3.1.10 applies. Therefore TK′,µ is positive,

i.e. K′ is positive definite on Ω̃ = supp(µ). In other words, K is positive definite up to an

additive constant, as a kernel on Ω̃× Ω̃. We arrive at the following important fact.

Lemma 3.1.11. Let K be a kernel on Ω×Ω. Suppose that µ is a minimizer of IK over

P(Ω). Then the kernel K must be positive definite modulo a constant on supp(µ), i.e. as a

kernel on supp(µ)× supp(µ). If IK(µ)≥ 0, then K is positive definite on supp(µ).

Various statements of this type are known in the literature [CFP17, FS13].

3.2 Invariant Measures

As explained in the previous section, measures with constant potentials are particularly

interesting from the point of view of energy minimization. They also naturally arise in

metric geometry, in connection with the so called “rendezvous numbers” [CMY86], and we

draw the term “invariant” from this literature. These applications and various interesting

properties warrant a separate discussion of such measures.

Definition, Examples, and Comments

We start with the following definition.

Definition 3.2.1. Let K be a kernel on Ω×Ω. We say that a measure µ ∈ P(Ω) is K-

invariant if the potential of K with respect to this measure is constant on Ω, i.e.

U µ

K (x) = IK(µ) for every x ∈Ω. (3.9)

We shall see shortly that these measures have an array of remarkable properties. Notice

that the definition does not require that µ has full support: while some of the statements in

this chapter will require this additional assumption, i.e. supp(µ) = Ω, the majority of them

hold even in its absence.
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Before proceeding to these properties we shall provide some examples, showing that

K-invariant measures is a rather rich notion. Observe that most of the examples below have

full support. Numerous statements that we shall prove for K-invariant measures will apply

to all these natural examples.

• If µ (locally) minimizes IK and has full support, then according to Theorem 3.1.7

and Corollary 3.1.9 , the measure µ is K-invariant.

• Let Ω = Sd−1 and assume that K is rotationally invariant, i.e. K(x,y) = F(〈x,y〉).

Then the normalized uniform surface measure is K-invariant, since the potential

Uσ
F (x) =

∫
Sd−1

F(〈x,y〉)dσ(y) is obviously independent of x ∈ Sd−1.

• If, moreover, the F from the previous example is a polynomial of degree M, and µ is

a spherical M-design, then µ must also be K-invariant.

• Similarly, assume that Ω is a compact two-point homogeneous space, K is invariant

with respect to the group of isometries, and η is the normalized uniform measure on

Ω. Then η is K-invariant. This equally applies to connected (e.g., projective spaces)

and discrete (e.g., Hamming cube) two-point homogeneous spaces.

• If Ω is a compact topological group, µ is its normalized Haar measure, and K is

invariant with respect to the group operation, i.e. K(x,y) = F(x− y), then µ is K-

invariant.

• Let Ω = [0,1] and K(x,y) = |x−y|. Then the measure µ = 1
2(δ0+δ1) is K-invariant.

Notice that this example provides an invariant measure which does not have full

support.

Despite an abundance of examples, the existence of a K-invariant measure is possible

only under significant restrictions on the geometry of the domain Ω and the structure of the

kernel K. For example, the following statement is true [CMY86].
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Lemma 3.2.2. Assume that U is a finite-dimensional vector space endowed with a strictly

convex norm, i.e. ‖x+ y‖U < ‖x‖U + ‖y‖U unless x and y are linearly dependent. Let

Ω⊂U be compact and set K(x,y) = ‖x− y‖U . If there exists a K-invariant measure on Ω,

then either Ω is a line segment or no three points of Ω are colinear.

For the case when K(x,y) = ‖x− y‖ is the Euclidean distance, this lemma shows, for

example, that an invariant measure doesn’t exist for the unit ball, while, as we know, it does

exist for the sphere.

Finally, we make the remark that if a measure µ is K-invariant, it implies that a con-

stant function is an eigenfunction of the Hilbert–Schmidt operator TK,µ in L2(Ω,µ) with

eigenvalue λ = IK(µ), which is implied by (3.8).

A Crucial Identity

The following simple relation provides a direct link between energy minimization and (con-

ditional) positive definiteness and will play a decisive role in many results of this section. It

is also an important first step in the proof of the Generalized Stolarsky principle (Theorem

5.3.1). In a nutshell, this lemma states that, while IK is a quadratic functional, it behaves

linearly around a K-invariant measure.

Lemma 3.2.3. Let K be a kernel on Ω×Ω and let µ be a K-invariant measure, i.e. U µ

K (x)=

IK(µ) for all x ∈Ω. Then for any ν ∈ P̃(Ω),

IK(ν−µ) = IK(ν)− IK(µ). (3.10)

More generally, if µ ∈ P(Ω) such that U µ

K (x) ≥ IK(µ), with equality on supp(µ), then for

any ν ∈ P(Ω)

IK(ν−µ)≤ IK(ν)− IK(µ), (3.11)

and equality (3.10) holds for any measure ν ∈ P̃(Ω) with supp(ν)⊆ supp(µ).
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Proof. If µ is K-invariant, then for any ν ∈ P̃(Ω),

IK(µ,ν) =
∫
Ω

U µ

K (x)dν(x) =
∫
Ω

IK(µ)dν(x) = IK(µ). (3.12)

Therefore

IK(ν−µ) = IK(ν)−2IK(µ,ν)+ IK(µ).

For the second part of our claim, observe that for any ν ∈ P(Ω), instead of equality

(3.12), one has the inequality IK(µ,ν)≥ IK(µ), and thus,

IK(ν−µ) = IK(ν)−2IK(µ,ν)+ IK(µ)≤ IK(ν)− IK(µ).

Finally, the last statement follows from the first by replacing Ω with supp(µ).

Theorem 3.1.7 and Corollary 3.1.9 show that if µ is a global (or at least local) minimizer

of IK , it satisfies the the conditions of the second statement in Lemma 3.2.3, and if in

addition µ has full support, it also satisfies the first condition, i.e. µ is K-invariant. Thus

Lemma 3.2.3 applies to (local) energy minimizers, which results in the following corollary:

Corollary 3.2.4. Let K be a kernel on Ω×Ω and µ be a (local) minimizer of IK . Then for

any ν ∈ P(Ω)

IK(ν−µ)≤ IK(ν)− IK(µ). (3.13)

For any ν ∈ P̃(Ω) such that supp(ν)⊆ supp(µ), then

IK(ν−µ) = IK(ν)− IK(µ). (3.14)
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Conditional Positive Definiteness and Energy Minimization

Identity (3.10) of Lemma 3.2.3 provides a clear link between energy minimization and

conditional positive definiteness. We would like to emphasize that relation (3.10) holds not

just for probability measures ν , but for arbitrary signed measures of total mass one, i.e.

ν ∈ P̃(Ω). Therefore, one can immediately deduce the following equivalence.

Theorem 3.2.5. Let K be a kernel on Ω×Ω and assume that µ is K-invariant. Then µ

minimizes IK over the set P̃(Ω) of normalized signed Borel measures if and only if K is

conditionally positive definite.

Moreover, µ uniquely minimizes IK over P̃(Ω) if and only if K is conditionally strictly

positive definite.

Proof. Suppose that K is conditionally positive definite. Then for any ν ∈ P̃(Ω), equality

(3.10) holds and, since (ν−µ)(Ω) = 0, we have

IK(ν)− IK(µ) = IK(ν−µ)≥ 0,

which shows that µ minimizes IK over P̃(Ω). If K is conditionally strictly positive definite,

then IK(ν) = IK(µ) only if ν−µ = 0 on all Borel sets of Ω, i.e. µ is the unique minimizer.

Assume conversely that IK(µ)≤ IK(ν) for each ν ∈ P̃(Ω). Consider an arbitrary signed

measure γ ∈Z (Ω). Define ν = µ+γ , then ν(Ω) = 1, i.e. ν ∈ P̃(Ω). Thus, applying (3.10)

once again, we find that

IK(γ) = IK(ν−µ) = IK(ν)− IK(µ)≥ 0,

hence K is conditionally positive definite. If µ is the unique minimizer, then the expression

above equals zero only for γ = 0, i.e. K is conditionally strictly positive definite.

Obviously, one of the implications holds for minimizers over probability measures

P(Ω).
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Corollary 3.2.6. Let K be a kernel on Ω×Ω and assume that µ is K-invariant. If K is

conditionally (strictly) positive definite, then µ (uniquely) minimizes IK over the set P(Ω)

of Borel measures probability measures.

Some remarks are in order. We would like to remind the reader that in some specific

cases, such as the sphere with the uniform surface measure (or more generally, two-point

homogeneous spaces with the corresponding uniform measures), the relation between en-

ergy minimization and some form of positive definiteness of the kernel is well known

[Sch42, BDM18]. However, it is usually demonstrated using the representation theory

of the underlying space and the associated orthogonal polynomial (Gegenbauer, Jacobi,

Krawtchouk) expansions. Theorem 3.2.5 above is a blanket statement that covers all of

these examples and beyond. Moreover, it relies only on the completely elementary identity

(3.10), thus simplifying the known proofs in all of the specific cases. In the spherical case,

a similar approach has been recently employed in [BDM18].

Conditional Positive Definiteness vs. Positive Definiteness up to an Ad-

ditive Constant

As we have observed in the previous discussions, two properties, which are somewhat

weaker than positive definiteness, play an important role in energy minimization: namely,

conditional positive definiteness and positive definiteness up to an additive constant. We

have already demonstrated in Lemma 2.2.4 that the latter always implies the former, and

the converse implication is not true in general. We shall now show that the converse im-

plication also holds, i.e. conditional positive definiteness implies positive definiteness up

to an additive constant, if we additionally assume the existence of a K-invariant measure.

Moreover, the statement also holds for the “strict” version of these properties.

Lemma 3.2.7. Let K be a kernel on Ω×Ω and assume that K is conditionally (strictly)

positive definite. Suppose also that there exists a K-invariant measure µ ∈ P(Ω). Then K
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is (strictly) positive definite up to an additive constant.

Proof. Let K be conditionally positive definite. Set C = −IK(µ)+ 1. Then K +C is still

conditionally (strictly) positive definite, µ is (K +C)-invariant, and IK+C(µ) = (µ(Ω))2 =

1. For any signed measure ν with ν(Ω) = 1, identity (3.10) implies that

IK+C(ν)− IK+C(µ) = IK+C(ν−µ) = IK(ν−µ)≥ 0.

Therefore, IK(ν)≥ 1 > 0.

Now consider an arbitrary measure γ ∈M (Ω). If γ(Ω) = 0, then IK+C(γ) ≥ 0 by

conditional positive definiteness (and IK+C(γ)> 0 for γ 6= 0 for the “strict” version if γ 6= 0).

If γ(Ω) = c 6= 0, we can write γ = cν for some ν ∈ P̃(Ω). Therefore, IK+C(γ) =

c2IK+C(ν)≥ c2 > 0. Hence K +C is (strictly) positive definite.

Lemmas 2.2.4 and 3.2.7 together show that in the presence of a K-invariant measure,

conditional positive definiteness and positive definiteness modulo an additive constant are

equivalent notions. This is the case, for example, for rotationally invariant kernels K on the

sphere, since the uniform surface measure σ is K-invariant for all such kernels.

Local and Global Minimizers

Under some additional assumptions local minimizers of IK are necessarily global minimiz-

ers. Some facts of this type have been observed in the papers of the author with various

coauthors [BFG+a,BGM+a]. Here we prove a variety of more general statements with the

same flavor.

Proposition 3.2.8. Suppose that µ is a local minimizer of IK and any of the following two

conditions holds:

1. the measure µ is K-invariant, i.e. U µ

K (x) = IK(µ) for all x ∈Ω;

2. K is conditionally positive definite.
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Then µ is a global minimizer of IK .

Observe that, according to Corollary 3.1.9, condition (1) is automatically satisfied if µ

has full support.

Proof. Assume that (1) holds. Then for any ν ∈ P(Ω), we have IK(µ,ν) = IK(µ) and

therefore, since µ is a local minimizer, for small t > 0, we have

IK(µ)≤ IK((1− t)µ + tν) = (1− t)2IK(µ)+2t(1− t)IK(µ,ν)+ t2IK(ν)

= (1− t)2IK(µ)+2t(1− t)IK(µ)+ t2IK(ν) = (1− t2)IK(µ)+ t2IK(ν).

Thus IK(µ)≤ IK(ν), i.e. µ is a global minimizer of IK in P(Ω).

Now assume that K is conditionally positive definite. Then for each ν ∈ P(Ω), the

measure ν−µ has total mass zero. Therefore, according to conditional positive definiteness

of K and inequality (3.13) of Corollary 3.2.4,

IK(ν)− IK(µ)≥ IK(ν−µ)≥ 0. (3.15)

Therefore, in this case, µ also minimizes IK .

If both conditions (1) and (2) hold simultaneously, an even stronger conclusion can be

drawn.

Proposition 3.2.9. Let µ be a local minimizer of IK . Assume in addition that µ is K-

invariant and K is conditionally positive definite. Then µ is a global minimizer of IK over

P̃(Ω), the set of all signed Borel measures with total mass one.

Proof. Let ν ∈ P̃(Ω). Since µ is a K-invariant local minimizer, we can apply conditional

positive definiteness of K in conjunction with equality (3.10) of Lemma 3.2.3 to obtain

IK(ν)− IK(µ) = IK(ν−µ)≥ 0,
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giving us our claim.

Finally, another version of the local-to-global minimization principle may be proved

under the assumption that IK is convex at µ , which according to Lemma 3.1.5, is equivalent

to the fact that the arithmetic mean inequality (3.5) holds for any measure ν ∈ P(Ω). We

have the following statement.

Theorem 3.2.10. Suppose that K is a kernel on Ω×Ω and that for some µ ∈ P(Ω) there

exists a constant M ∈ R such that U µ

K (x)≥M, with equality on supp(µ). If IK is convex at

µ , then µ is a global minimizer of IK over P(Ω).

Before proving this statement we observe that its first assumption is satisfied in any of

the following two cases: (a) if µ is K-invariant; (b) if µ is a local minimizer, according

to Corollary 3.1.9. In addition, if convexity at µ were replaced with convexity of IK on

P(Ω), then in view of Proposition 3.1.6, this would be equivalent to the conditional positive

definiteness of K. Thus, this theorem recovers and strengthens part (2) of Proposition 3.2.8.

Moreover, we have the following immediate corollary, which will be used later.

Corollary 3.2.11. Let K be a kernel on Ω×Ω and let µ ∈ P(Ω) be a K-invariant measure.

If IK is convex at µ , then µ is a global minimizer of IK over P(Ω).

Proof of Theorem 3.2.10. Observe first that the constant M is necessarily equal to IK(µ):

IK(µ) =
∫
Ω

U µ

K (x)dµ(x) =
∫

supp(µ)

Mdµ(x) = M.

For any ν ∈ P(Ω), we have that

IK(µ,ν) =
∫
Ω

U µ

K (x)dν(x)≥ IK(µ).

Convexity of IK at µ , according to Lemma 3.1.5, is equivalent to the arithmetic mean
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inequality (3.5). Thus,

IK(µ)≤ IK(µ,ν)≤
1
2

IK(µ)+
1
2

IK(ν),

so IK(ν)≥M = IK(µ).

3.3 Invariant Measures and Minimizers with Full Sup-

port

It is now time to summarize the results of the previous sections. It may not be yet obvious,

but we have proven (sometimes quite surprising) equivalences between many different no-

tions. We shall restrict our attention to the case when the measure µ is K-invariant (i.e. has

constant potential) and has full support. As we have discussed before, these conditions are

satisfied by many natural candidates (the uniform measure on the sphere or other two-point

homogeneous spaces, the Haar measure on a compact topological group, etc). Though a

majority of the implications are valid even just for K-invariant measures without the full

support assumption, assuming that µ has full support truly ties the picture together. We

shall carefully trace which of the conclusions require this condition.

We start with the following long list of equivalences.

Theorem 3.3.1. Let K be a kernel on Ω×Ω. Assume that there exists a measure µ ∈ P(Ω),

which is K-invariant and has full support, i.e. U µ

K (x) = IK(µ) for all x ∈Ω and supp(µ) =

Ω.

Then the following conditions are equivalent:

1. K positive definite modulo a constant.

2. K is conditionally positive definite.

3. µ is a local minimizer of IK .
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4. µ is a global minimizer of IK over P(Ω).

5. µ is a global minimizer of IK over P̃(Ω).

6. IK is convex.

7. IK is convex at µ .

8. The arithmetic mean inequality (3.1) holds for all µ1,µ2 ∈ P(Ω) (or, equivalently for

all µ1,µ2 ∈ P̃(Ω)).

9. The arithmetic mean inequality (3.1) holds when µ1 = µ .

10. The kernel K can be represented as

K(x,y) =
dim(L2(Ω,µ))

∑
j=1

λ jφ j(x)φ j(y)

where the series converges uniformly and absolutely, the function φ1 is constant, and

λ j ≥ 0 for j ≥ 2.

Proof. For the reader’s convenience the implications proving this theorem are summarized

in Figure 3.1.

We open with the list the implications that do not require any assumptions on µ . It is

obvious that (5) implies (4), which in turn implies (3). Also, (6) implies (7), and similarly,

(8) implies (9).

The equivalence between (2), (6), and (8) is proved in Lemmas 3.1.1 and 3.1.5 together

with Proposition 3.1.6. Lemma 3.1.5 also establishes the equivalence between (7) and (9).

Lemma 2.2.4 shows that (1) implies (2).

The following implications rely on the fact that µ is K-invariant, but do not require µ

to have full support. Lemma 3.2.7 demonstrates that (2) implies (1). Theorem 3.2.5 yields

the equivalence of (2) and (5). Corollary 3.2.11 to Theorem 3.2.10 shows that (4) follows
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Figure 3.1: Equivalences in Theorem 3.3.1: double line (cyan) arrows are implications
that hold without additional assumptions; single line (blue) ones require K-invariance, but
not full support; the dashed (black) arrows represent the implications which do require the
assumption of full support.
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from (7). Finally, part (1) of Proposition 3.2.8 guarantees that (3) implies (4).

The equivalence between (1) and (10) is discussed in Lemma 2.2.2 and Mercer’s The-

orem (see Theorem 2.3.3), or more specifically Corollary 2.3.4. The fact that (1) implies

(10) relies on the fact that for a K-invariant measure µ , the constant function 1Ω is an eigen-

function of the Hilbert–Schmidt operator TK,µ in L2(Ω,µ), and the condition supp(µ) = Ω

implies that the expansion in Mercer’s Theorem is valid on all of Ω. The implication (10)

⇒ (1) holds without any additional assumptions, according to Lemma 2.2.2.

In conclusion, we observe that Lemma 3.1.11 demonstrates that (4) implies (1), which

closes the loop of implications – and, except for the standalone equivalence between (1)

and (10), this is the only implication in our proof where the fact that supp(µ) = Ω is used.

Indeed, Lemma 3.1.11 only guarantees that the kernel K is positive definite (up to constant)

on the support of the minimizer. Observe also that due to Theorem 3.1.7, if (4) holds and

µ has full support.

To reiterate, this theorem reveals several interesting novel effects that happen to a K-

invariant measure (with full support):

• Equivalence between minimization over the set P(Ω) of probability measures and

the set P̃(Ω) of all signed measures of mass one. This effect has been observed for

rotationally invariant kernels on the sphere and the surface measure σ by the author

and collaborators [BDM18]. This is not necessarily the case in other settings. In

particular, for the integral over the unit ball Bd

∫
Bd

∫
Bd

‖x− y‖dµ(x)dµ(y),

according to [Bjö56], the unique maximizer over both P(Bd) and P(Sd−1) is σ . Ac-

cording to the aforementioned equivalence, σ is also a maximizer over P̃(Sd−1),
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while in the case of signed measures on the ball, the maximizer does not exist

[HNW11].

• Equivalence between being a local and global energy minimizer. This effect, in

a slightly less general form, has been observed by the author and collaborators in

[BFG+a, BGM+a].

• Equivalence between other local and global properties: e.g., the energy functional IK

is convex on the whole set of probability measures if and only if it is convex just at

the special measure µ .

• Equivalence between conditional positive definiteness of the kernel and positive def-

initeness up to constant, which is not true in general.

We now formulate similar theorems for kernels which have the “strict” version of the

properties and for positive definite kernels. We start with the latter.

Theorem 3.3.2. Suppose that K is a kernel on Ω×Ω and that there exists a measure

µ ∈ P(Ω), which is K-invariant and has full support, i.e. U µ

K (x) = IK(µ) for all x ∈Ω and

supp(µ) = Ω. Then the following conditions are equivalent:

1. The kernel K is positive definite.

2. The geometric mean inequality (3.2) and IK(µ1)≥ 0 hold for all µ1,µ2 ∈ P(Ω).

3. The measure µ is a global minimizer of IK and satisfies IK(µ)≥ 0.

4. The kernel K can be represented as

K(x,y) =
dim(L2(Ω,µ))

∑
j=1

λ jφ j(x)φ j(y)

where the series converges uniformly and absolutely, and λ j ≥ 0 for j ≥ 1.
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5. There exists some symmetric k ∈ L2(Ω×Ω,µ×µ) such that for all x,y ∈Ω,

K(x,y) =
∫
Ω

k(x,z)k(z,y)dµ(z).

Proof. Lemma 3.1.2, Corollary 2.3.4, and Proposition 2.3.6 show the equivalence of (1),

(2), (4), and (5). Positive definiteness, i.e. condition (1), guarantees that IK(µ) ≥ 0, and

that µ is a minimizer, due to Theorem 3.3.1. Conversely, Lemma 3.1.11 shows that (3)

implies (1), finishing our proof. Observe also that according to Theorem 3.3.1 it does not

matter whether we mean global minimization over P(Ω) or P̃(Ω) in condition (3).

Theorem 3.3.3. Suppose that K is a kernel on Ω2 and that that there exists a measure

µ ∈ P(Ω) which is K-invariant, i.e. U µ

K (x) = IK(µ) for all x ∈ Ω. Then the following

conditions are equivalent:

1. K is conditionally strictly positive definite.

2. K is strictly positive definite modulo a constant.

3. µ is the unique minimizer of IK over P̃(Ω).

If in addition supp(µ) = Ω, i.e. µ has full support, then each of the conditions (1)–(3)

implies the following

4. The kernel K can be represented as

K(x,y) =
dim(L2(Ω,µ))

∑
j=1

λ jφ j(x)φ j(y)

where {φ j} is the orthonormal basis consisting of eigenfunctions of the Hilbert–

Schmidt operator TK,µ in L2(Ω,µ), the function φ1 is a constant, the series converges

uniformly and absolutely, and λ j > 0 for j ≥ 2.

Moreover, if the span of {φ j} is dense in C(Ω), then (4) also implies conditions (1)–(3).
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Proof. Lemma 2.2.4 shows that (2) implies (1), while Lemma 3.2.7 provides the converse

implication. The equivalence of (3) and (1) is proved in Theorem 3.2.5.

Before we turn to dealing with condition (4), recall that K-invariance of µ implies that

a constant is an eigenfunction of the operator TK,µ , so we shall assume that φ1 = 1Ω.

Now we show that (3) implies (4). Since µ minimizes IK and has full support, by The-

orem 3.3.1, K is positive definite up to a constant, and since φ1 = 1, by Mercer’s Theorem,

the expansion in part (4) holds with some λ j ∈R and with the series converging uniformly

and absolutely. Suppose, indirectly, that µ is the unique minimizer of IK over P̃(Ω), but

there exists some l ≥ 2 such that λl ≤ 0. Let dν(x) = (1+ φl(x))dµ(x). Orthogonality

implies that
∫
Ω

φl(x)dµ(x) = 0, therefore ν ∈ P̃(Ω). Then we obtain

IK(ν) =
∫
Ω

∫
Ω

K(x,y)(1+φl(x))(1+φl(y))dµ(x)dµ(y)

= IK(µ)+2〈TK,µφl,1Ω〉L2(Ω,µ)+ 〈TK,µφl,φl〉L2(Ω,µ)

= IK(µ)+2λl〈φl,1Ω〉L2(Ω,µ)+λl‖φl‖2
L2(Ω,µ)

= IK(µ)+λl ≤ IK(µ),

which contradicts the fact that µ is the unique minimizer over P̃(Ω).

Finally, we show that (4) implies (2) under the aforementioned additional assumption.

Let K′(x,y) = K(x,y)−λ1 +1 and ν ∈M (Ω). Then

IK′(ν) =
∫
Ω

∫
Ω

K′(x,y)dν(x)dν(y)

= (ν(Ω))2 +
dim(L2(Ω,µ))

∑
j=2

∫
Ω

∫
Ω

λ jφ j(x)φ j(y)dν(x)dν(y)

= (ν(Ω))2 +
dim(L2(Ω,µ))

∑
j=2

λ j

(∫
Ω

φ j(x)dν(x)
)2
≥ 0.
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Clearly, the only way that IK′(ν) = 0 is if
∫
Ω

φ j(x)dν(x) = 0 for all j ≥ 1. By the density of

span({φ j}dim(L2(Ω,µ))
j=1 ) in C(Ω), we can conclude that this implies dν = 0, so K′ must be

strictly positive definite, which completes the proof.

We conclude with the remark that the additional condition imposed for the sufficiency

of condition (4) is not very restrictive in practice. For example in the case of rotationally

invariant kernels on the sphere and µ = σ , the eigenfunction φ j are simply spherical har-

monics, which span all polynomials on the sphere and thus their span is dense in the space

continuous functions.

3.4 Energies on Two-point Homogeneous Spaces

On a compact, connected, two-point homogeneous set Φ, it is natural to ask, for an isometry

invariant kernel F , whether the uniform surface measure η is a minimizer of the energy IF .

Since F is isometry invariant, we have that for every isometry θ on Φ,

Uη

F (θx) =
∫
Φ

F(τ(θx,y))dη(y) =
∫
Φ

F(τ(x,θ−1y))dη(θ−1y)

=
∫
Φ

F(τ(x,y))dη(y) =Uη

F (x),

so the potential Uη

F is constant on Φ. This means that η is an F-invariant measure and

hence Theorems 3.3.1, 3.3.2, and 3.3.3 hold. In particular, η minimizes IF if and only if

F is positive definite modulo a constant. Due to (2.35), this means that if F is a positive

definite (modulo a constant) polynomial of degree M, then any weighted M-design on Φ is

a minimizer of IF .

We now show that having nonnegative coefficients in the Jacobi expansion of F is

equivalent to the fact that η is a minimizer of IF over P(Φ), which has been shown in a

number of papers, see for instance [DG03, BD19, BGM+a]. It immediately follows from
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the equivalence of η being a minimizer of IF and positive definiteness (modulo a constant)

of F , from Theorem 3.3.1, and Proposition 2.4.2, however, we will provide a direct proof.

Let, as before Cn =C(α,β )
n denote the normalized Jacobi polynomials associated to Φ.

Proposition 3.4.1. Let F ∈C([−1,1]), F(t) =
∞

∑
n=0

F̂nCn(t), and µ ∈ P(Φ). Then, the fol-

lowing are equivalent:

1. F̂n ≥ 0 for all n≥ 1,

2. the surface measure η is a minimizer of IF .

Moreover, η is the unique minimizer of IF if and only if F̂n > 0 for all n≥ 1.

Proof. We first show that η is a minimizer of IF . Assume that F̂n ≥ 0 for all n ≥ 1. Then

by Lemma 2.4.1, the Fubini theorem, and the addition formula (2.19), we have, for any

µ ∈ P(Φ),

IF(µ) =
∞

∑
n=0

F̂n

∫
Φ

∫
Φ

Cn(τ(x,y))dµ(x)dµ(y)

=
∞

∑
n=0

F̂n

dimVn

dimVn

∑
n=1

∫
Ω

∫
Ω

Yn,k(x)Yn,k(y)dµ(x)dµ(y)

= F̂0 +
∞

∑
n=1

F̂n

dimVn
·

dimVn

∑
k=1

∣∣∣∣∣∣
∫
Ω

Yn,k(x)dµ(x)

∣∣∣∣∣∣
2

,

≥ F̂0 = IF(η).

If F̂n > 0 for all n ≥ 1, then equality can be achieved above only if µ is orthogonal to all

spaces Vn, which directly implies that µ = η .

If F̂n < 0 for some n ≥ 1, then set, for some p ∈ Φ, Yn(x) = Cn(τ(x, p)) ∈ Vn and

dµ(x) = (1+ εYn(x))dη(x), where ε > 0 is sufficiently small so that (1+ εYn(x)) ≥ 0 on

Ω. Orthogonality and the fact that dim(Vn)Cn(τ(x,y)) is the reproducing kernel of Vn show
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us that

IF(µ) =
∫
Φ

∫
Φ

F(τ(x,y))(1+ εYn(x))(1+ εYn(y))dη(x)dη(y)

= IF(η)+ ε
2F̂n

∫
Φ

Yn(x)2dη(x)< IF(η),

implying that η is not a minimizer for IF . If F̂n = 0 for some n ≥ 1, the same argument

shows that IF(µ) = IF(η), i.e. η is not the unique minimizer.

Observe that by combining the equivalence of positive definiteness (modulo a constant)

on Φ and η being a minimizer with Lemma 3.1.11, we immediately achieve the following:

Corollary 3.4.2. Let F ∈C([−1,1]). Then either η is a minimizer of IF , or every minimizer

of IF is supported on a proper subset of Φ.

3.5 Energy on the Sphere

Clearly, everything that was said about the invariant measures in general and the case of

compact connected two-point homogeneous spaces applies to the case of the sphere Sd−1

and the uniform surface measure σ . In particular, Proposition 3.4.1 holds on Sd−1 if we

replace the normalized Jacobi expansion with a Gegenbauer expansion. We now collect

some of our results for the sphere, for convenience.

Proposition 3.5.1. For a function F ∈ C([−1,1]) and λ = d−2
2 , the following conditions

are equivalent:

1. F is positive definite on Sd−1.

2. All Gegenbauer coefficients of F are non-negative, i.e.

F̂(n,λ )≥ 0 for all n≥ 0.
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3. There exists a function f ∈ L2([−1,1],wλ ) such that

F(〈x,y〉) =
∫

Sd−1

f (〈x,z〉) f (z · y)dσ(z), x,y ∈ Sd−1, (3.16)

i.e. F is the spherical convolution of f with itself.

4. The normalized Lebesgue measure σ is a minimizer of IF over P(Sd−1) and IF(σ)≥

0.

While this theorem clearly follows from Corollary 2.5.2, Theorem 3.3.2 and Proposition

3.4.1, we also note that the equivalence of (1) and (2) is a celebrated theorem of Schoenberg

[Sch42].

In some situations, Gegenbauer coefficients can give some information about the mini-

mizers, even when σ does not minimize the energy. In particular, the facts that Gegenbauer

polynomials Cλ
n achieve their maximum at t = 1, are even if n is even, and are odd if n

is odd, provide certain conditions, other than being a positive definite polynomial, under

which there exist discrete minimizers or all minimizers are discrete. These results can be

found in [BD19].

Proposition 3.5.2. Let F ∈C([−1,1]). Then the following hold:

1. If F̂(n,λ ) ≤ 0 for all n ≥ 1, then a Dirac delta mass µ = δz, for any z ∈ Sd−1, is

a minimizer of IF . If F has a strict absolute minimum at t = 1 (in particular, if

F̂(n,λ ) < 0 for all n ≥ 1), then every minimizer is a Dirac mass. Observe that this

case resonates with Theorem 4.1.3.

2. If (−1)n+1F̂(n,λ ) ≥ 0 for all n ≥ 1, and the Gegenbauer expansion of F converges

uniformly to F, then a measure of the form µ = 1
2

(
δz + δ−z

)
, for any z ∈ Sd−1, is

a minimizer of IF . Moreover, all minimizers are of this form if the strict inequality

(−1)n+1F̂(n,λ )> 0 holds.
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3. If F̂(2n,λ ) = 0 and F̂(2n− 1,λ ) ≥ 0 for all n ≥ 1, then every centrally symmet-

ric measure minimizes IF . In particular, there exist discrete minimizers. Moreover,

if F̂(2n,λ ) = 0 and F̂(2n− 1,λ ) > 0 for all n ≥ 1, then all minimizers of IF are

centrally symmetric.

Finally, we would like to remind the reader that Jacobi and Gegenbauer expansions are

closely connected to Mercer’s theorem (Theorem 2.3.3), and one could also take this ap-

proach in developing Schoenberg’s theory. Indeed, the Funk–Hecke formula (2.29) shows

that spherical harmonics of order n are eigenfunctions of the Hilbert–Schmidt operator

TK,σ with the kernel K(x,y) = F(〈x,y〉), corresponding to the eigenvalue F̂(n,λ ). Thus

for positive definite kernels F , all Gegenbauer coefficients are non-negative, which recov-

ers Schoenberg’s theorem [Sch42]. Moreover, using Mercer’s theorem and the addition

formula, we find that

F(〈x,y〉) = K(x,y) =
∞

∑
n=0

F̂n

N(n,d)

∑
k=1

Yn,k(x)Yn,k(y) =
∞

∑
n=0

F̂(n,λ )
n+λ

λ
Cλ

n (〈x,y〉),

and hence the Gegenbauer expansion of a function F ∈C[−1,1], which is positive definite

on Sd−1 converges absolutely and uniformly.
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Chapter 4

Support of Minimizers

Lemma 3.1.11 implies that for kernels K which are not positive definite (modulo a con-

stant), the support of any minimizing probability measure µ ∈ P(Ω) cannot be the entire

set Ω. Moreover, parts 1 and 2 of Proposition 3.5.2 show us that for kernels of a cer-

tain type on the sphere, not only are the minimizers of the energy necessarily discrete, but

we can in fact determine their cardinality. Furthermore, we can exactly characterize what

those minimizers are. This led us to several interesting questions. In particular, under cer-

tain conditions on K (and Ω), are all minimizers of IK necessarily discrete, or otherwise

concentrated? Such a phenomenon has been repeatedly observed for repulsive-attractive

potentials (i.e. potentials that depend only on distance and under which particles repel each

other at close range, but attract each other at distant ranges) in the Euclidean space Rd .

Definition 4.0.1. Let (Ω,ρ) be a (not necessarily compact) metric space and suppose that

W : [0,diam(Ω))→R is continuous (with W also being defined and continuous at diam(Ω)

if Ω is compact). We call a potential K(x,y) =W (ρ(x,y)) on Ω repulsive-attractive if there

exist some R0 ∈ (0,diam(Ω)) such that W is strictly decreasing (repelling) on (0,R0) and

strictly increasing (attracting) on (R0,diam(Ω)).

As mentioned in Section 2.1, energy optimization in non-compact spaces is possible,

so long as some constraint on the problem forces the support of minimizers to be bounded.
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Repulsive-attractive potentials provide such a restriction, as shown by Carillo, Figalli, and

Patacchini in the Euclidean setting.

Lemma 4.0.2. [CFP17, Lemma 2.6] Let W : [0,∞) → R be continuous and repulsive-

attractive. Suppose that there exist some R′ > 0 such that for r > R′, W (r) > W (0). Then

the minimizers of the energy

IW (µ) :=
∫
Rd

∫
Rd

W (||x− y||)dµ(x)dµ(y) (4.1)

over P(Rd) have compact support.

In many energy minimization problems in the compact setting, one deals with purely

repulsive potentials, such as the Riesz potentials. However, there are many phenomena

that can be modeled by repulsive-attractive potentials. For instance, interactions between

neutral molecules, which involve repulsion due to overlapping electron orbitals and attrac-

tion due to London dispersion forces, are often simulated by the Lennard-Jones potential

[ZD83] The minimization of repulsive-attractive energies has been observed to result in a

clustering phenomenon in various models in computational chemistry, mathematical biol-

ogy, social sciences, and physics [BLT06,BC14,CMV03,FS13,HP06,MEK99,VBUKB12,

WS15]. Carrillo, Figalli, and Patacchini provided the first theoretical explanation for this

discreteness of minimizers for mildly repulsive repulsive-attractive energies in Euclidean

space.

Theorem 4.0.3 ([CFP17]). Let W satisfy the conditions of Lemma 4.0.2. Suppose that

W (0) = 0 and for some γ > 2 and C > 0,

lim
r→0+

W (r)r−γ →−C,

i.e. W is mildly repulsive. Then any minimizer µ ∈ P(Rd) of IW has finite support.
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An analogue of this result for certain compact sets has recently been discovered by

Vlasiuk [Vla].

Though little seems to be known about the minimizers of such energies when γ = 2, this

value acts as a “breaking point”: for γ < 2, i.e. when W is “strongly repulsive”, minimizers

are no longer discrete.

Theorem 4.0.4 ([BCLR13]). Let W be a repulsive-attractive potential such that W (0) = 0

and for some min{0,2−d}< γ < 2 and C > 0,

lim
r→0+

W (r)r−γ →−C.

Then the support of any minimizer µ ∈ P(Rd) of IW has Hausdorff dimension greater than

or equal to 2− γ .

As we will soon discuss, this result is specific to the Euclidean setting, and does not

hold in the compact setting.

We note that Theorem 4.0.3 is not quantitative, and except for the one dimensional

case R [CFP17], there are few estimates on the cardinality of the support of these dis-

crete minimizers. The recent paper of Lim and McCann [LMa] addresses this question for

certain repulsive-attractive potentials with γ ≥ 2, showing that the corresponding energies

are uniquely minimized by discrete measures on regular simplices, and Kang, Kim, Lim,

and Seo have classified certain repulsive-attractive potentials for which two-point measures

appear as minimizers in [KKLS21]. However, the problem of generally determining cardi-

nalities of minimizers in the Euclidean setting remains largely unsolved. The problem of

understanding minimizers when γ = 2 is open as well, though some known energies in both

the Euclidean case [LMa] and the compact case (see, e.g., Chapter 6) have only discrete

minimizers.

We now turn our attention to the compact setting, where we do not require our po-

tentials to be eventually attractive for global minimizers to be well-defined. Comparing
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Theorems 4.0.3 and 4.0.4 to Theorem 2.1.2 results in a few important observations. First,

weak-repulsiveness might be a sufficient condition in the compact setting to guarantee only

discrete minimizers. Second, the geometry of a compact domain Ω affects the support

of the minimizers to the point where even strongly-repulsive energies may have discrete

minimizers, unlike the Euclidean case. Moreover, as we will show in Chapter 5, there ex-

ist strongly-repulsive kernels on the sphere (of the same strength of repulsion, in fact) for

which minimizers can be discrete and for which only σ , the normalized Lebesgue measure

on the sphere, is a minimizer. This clearly means that the geometry of Ω and the strength of

repulsion, γ , may not be sufficient to determine discreteness or dimension of minimizers,

as they are in the Euclidean case. Finally, much like the Euclidean case, there appears to be

a breaking point at γ = 2 that may change the behavior of minimizers, and little is known

for what generally happens in this instance. As many of the kernels we are most interested

in, e.g. (6.1), (5.15), and (7.1), are not weakly-repulsive (or not weakly-attractive for the

latter two), in this chapter we develop methods to determine properties of minimizers that

ignore our potentials’ strength of repulsion (attraction).

In Section 4.1, we prove a fairly general condition on a kernel F on the sphere guar-

anteeing the existence of a discrete minimizer and obtain bounds on the cardinality of the

support of such minimizers. The proof relies on the analysis of the structure of extreme

points of the set of moment-constrained measures.

In Section 4.2, we show that for any kernel F on the sphere that is real-analytic but not

positive definite (modulo a constant), the support of any minimizer of IF must have empty

interior. Moreover, on the circle S1, they are discrete. This generates a certain dichotomy:

for an analytic function F , either the energy IF is minimized by the normalized Lebesgue

measure σ , or all minimizers have support with empty interior.

In Section 4.3, we expand our focus to all connected, compact, two-point homogeneous

spaces Φ, and show that for a certain class of functions, not only can we determine the

existence of discrete minimizers and bounds on the cardinality of their support, we can
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in fact provide an explicit minimizer. Using arguments based on the linear programming

method which goes back to Delsarte and Yudin [Del73, Yud92] and which are reminiscent

of those appearing in [CK07], we demonstrate that tight M-designs minimize the energy

IF for all absolutely monotonic functions of degree M with F(M+1) ≤ 0. Moreover, if F is

strictly absolutely monotonic of degree M, tight M-designs characterize the minimizers.

4.1 Extreme Points for Sets of Moment-constrained Mea-

sures

In the present section, we exhibit a large class of kernels K for which there exist discrete

minimizers of the energies IK . The methods that we employ are closely related to moment

problems.

Let Ω be a compact metric space and let B(Ω) denote the set of positive Borel mea-

sures on Ω. Given continuous functions φ0, ...,φn on Ω and non-negative constants ci, we

consider the set

H =

{
µ ∈B(Ω) :

∫
Ω

φi(x)dµ(x) = ci, i = 0,1, . . . ,n
}
, (4.2)

which consists of Borel measures whose moments with respect to φi ∈C(Ω) are fixed. We

always set φ0 ≡ 1 and c0 = 1, so that µ ∈ H guarantees that µ is a probability measure.

It is easy to see that H is convex, bounded, and weak∗ closed, and therefore is weak∗

compact. By the Krein–Milman Theorem, H is the weak∗ closure of ext(H) — the set of

extreme points of H (i.e. the measures µ ∈ H such that µ cannot be written as a convex

combination of other measures in H). The results presented below describe the structure of

ext(H) – in particular, the discreteness of its elements.

We start with a theorem that gives a necessary condition for µ to be an extreme point

of H.
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Theorem 4.1.1 ([Dou64]). Assume that µ ∈ ext(H). Then

L1(µ) = span{φ0 = 1,φ1, . . . ,φn}. (4.3)

Proof. Assume that g ∈ L∞(µ) satisfies

∫
Ω

φigdµ = 0, i = 0,1, . . . ,n.

Multiplying g by a constant, we may assume that ‖g‖L∞(µ) < 1. Then the measures µ±,

defined by dµ± = (1±g)dµ , belong to H, since µ± ∈B(Ω) and

∫
Ω

φidµ± =
∫
Ω

φi(1±g)dµ =
∫
Ω

φidµ = ci.

At the same time, µ = 1
2(µ−+µ+). Since µ ∈ ext(H), this implies that µ± = µ and hence

g = 0 µ-a.e. Therefore, the functions φi span L1(µ).

Remark: An infinite version of this statement also holds. In this case, for µ ∈ ext(H) the

span of {φi}∞
i=0 is dense in the space L1(dµ).

We now state and prove a result, which demonstrates the discreteness of the elements of

ext(H). This result has a number of precursors and extensions; see [Ric57, Rog58, Rog62,

Ros51, Win98, Zuh62].

Theorem 4.1.2 ([Kar83]). Let µ ∈ H. Then the following statements are equivalent:

1. µ ∈ ext(H).

2. The cardinality of supp(µ) is at most n + 1. Moreover, if we denote supp(µ) =

{x1, . . . ,xk}, then the vectors v j =
(
1,φ1(x j), . . . ,φn(x j)

)
, j = 1,2, . . . ,k, are linearly

independent.

Proof. (1)⇒(2). Assume that there exist points {x1, . . . ,xn+2} ⊆ supp(µ). Then one can

find a vector y ∈Rn+2, which is not in the span of the vectors
(
φi(x1),φi(x2), . . . ,φi(xn+2)

)
,

82



i= 0,1, . . . ,n, since the latter subspace is at most n+1 dimensional. Appealing to Urysohn’s

Lemma, one can construct a function g ∈ C(Ω) ⊆ L1(µ) such that g(xi) = 〈y,ei〉 (where

{e1, ...,en+2} is an orthonormal basis of Rn+2) for i= 1,2, . . . ,n+2. But then g 6∈ span{φi},

which contradicts Theorem 4.1.1, so
∣∣supp(µ)

∣∣≤ n+1.

Now that it is known that µ = ∑
k
i=1 tiδxi with k ≤ n+ 1, ti > 0, ∑ ti = 1, consider the

linear system 

1 . . . 1

f1(x1) . . . f1(xk)

... . . . ...

fn(x1) . . . fn(xk)





a1

a2

...

ak


=



1

c1

...

cn


. (4.4)

This system has a unique solution ai = ti, since if the solution is not unique, then there

is a whole affine subspace of solutions and one could perturb the values of ti in opposite

directions. In other words, on could find two solutions of the form {ti± τi} and construct

two measures µ± = ∑
k
i=1(ti± τi)δxi so that µ± ≥ 0 and

∫
φidµ± =

∫
φidµ . This would

mean µ± ∈ K, and since µ = 1
2(µ++ µ−), this would contradict the fact that µ ∈ ext(H).

This proves the linear independence of the columns of the matrix above.

(2)⇒(1). Assume that (2) holds. Then the system (4.4) has a unique solution, i.e. µ is

uniquely determined by the condition supp(µ) ⊆ {x1, . . . ,xk}. If µ = tµ1 +(1− t)µ2 for

some t ∈ (0,1), then supp(µ)⊆ supp(µ1)∪ supp(µ2), and thus supp(µ j)⊆ {x1, . . . ,xk} for

j = 1,2. Therefore µ1 = µ2 = µ , i.e. µ ∈ ext(H).

We remark that convex geometry plays heavily into similar characterizations of so-

lutions to infinite dimensional optimization problems in the recent papers [BCDC+19,

CRPW12, UFW17].

Applications of Karr’s Theorem: Existence of Discrete Minimizers

We now apply the results on moment-constrained measures to show that for kernels K

with certain expansions, there exist discrete minimizers of IK . We specifically prove it for
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rotationally invariant kernels F on the sphere, but the generalization to other spaces is clear.

Let F̂(n,λ ) denote the coefficients in the Gegenbauer expansion (2.25) of the function

F ∈C([−1,1]). Consider the sets N+(F) = {n ≥ 0 : F̂(n,λ ) > 0} and N−(F) = {n ≥ 0 :

F̂(n,λ )< 0}. We shall assume that

∣∣N+(F)
∣∣< ∞, (4.5)

i.e. there are only finitely many terms of (2.25) with F̂(n,λ ) > 0. In this case, Lemma

2.4.1 implies that the Gegenbauer expansion of F converges uniformly and absolutely.

Recall that H d
n denotes the space of spherical harmonics of degree n on Sd−1. We are

now ready to state the main theorem of the section.

Theorem 4.1.3. Assume that the Gegenbauer expansion (2.25) of the function F ∈C([−1,1])

satisfies ∣∣N+(F)
∣∣= ∣∣{n≥ 0 : F̂(n,λ )> 0}

∣∣< ∞,

i.e. the Gegenbauer expansion has only finitely many positive terms. Then there exists a

discrete measure µ∗ ∈ P(Sd−1) such that

∣∣supp(µ∗)
∣∣≤ ∑

n∈N+(F)∪{0}
dim(H d

n ), (4.6)

and µ∗ minimizes the energy IF over P(Sd−1), i.e.

IF(µ
∗) = IF(Sd−1). (4.7)

Proof. Let ν ∈ P(Sd−1) be any minimizer of IF . We shall use the addition formula for

spherical harmonics (2.28), as well as the absolute convergence of (2.25), to re-write IF(µ),
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for any measure µ ∈ P(Sd−1), as

IF(µ) =
∞

∑
n=0

F̂(n,λ )
∫

Sd−1

∫
Sd−1

n+λ

λ
Cλ

n (〈x,y〉)dµ(x)dµ(y)

=
∞

∑
n=0

F̂(n,λ )

[
dim(H d

n )

∑
j=1

( ∫
Sd−1

Yn, j(x)dµ(x)
)2
]

= ∑
n∈N+(F)

F̂(n,λ )

[
dim(H d

n )

∑
j=1

( ∫
Sd−1

Yn, j(x)dµ(x)
)2
]

− ∑
n∈N−( f )

(
− F̂(n,λ )

)[dim(H d
n )

∑
j=1

( ∫
Sd−1

Yn, j(x)dµ(x)
)2
]
,

the last of which we define as the difference of functionals F (µ)−G (µ). It is easy to see

that G is convex with respect to µ since it is a positive linear combination of squares of

linear functionals of µ . Let us set

HF =

{
µ ∈B(Sd−1) :

∫
Sd−1

Yn, j(x)dµ(x) =
∫

Sd−1

Yn, j(x)dν(x), n ∈ N+(F), j = 1, . . . ,dim(H d
n )

}
,

so that ν ∈ HF and F (µ) = F (ν) for µ ∈ HF . Without loss of generality, we shall

assume that 0 ∈ N+(F). This guarantees that µ ∈ HF is a probability measure (similarly to

setting c0 = 1 and φ0≡ 1 earlier). Since |N+(F)|< ∞, the set HF has finitely many moment

constraints and Theorem 4.1.2 is applicable. In fact, the number of constraints is exactly

the right-hand side of (4.6).

Given that G is convex in µ and HF is a convex weak∗ compact subset of B(Sd−1), we

conclude that G (µ) achieves its maximum on HF at a point of ext(HF). Hence there exists
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a measure µ∗ ∈ ext(HF) such that G (µ∗) = sup
µ∈HF

G (µ). We then find that

IF(Sd−1) = inf
µ∈P(Sd−1)

IF(µ) = IF(ν) = F (ν)−G (ν) = F (µ∗)−G (ν)

≥F (µ∗)−G (µ∗) = IF(µ
∗)≥IF(Sd−1),

i.e. IF(µ
∗) = M and µ∗ is also a minimizer of IF .

Since µ∗ ∈ ext(HF), we can apply Karr’s theorem (Theorem 4.1.2) to finish our proof.

4.2 Minimizers of Energies with Analytic Kernels

It follows from Lemma 3.1.11 that if K is not positive definite (modulo a constant) on

Ω, then the support of a minimizer µ of IK must be a proper subset of Ω. When Ω is a

real-analytic manifold and K is real-analytic, we can make a stronger claim: the support of

any minimizer must have empty interior. For simplicity, we will prove this for rotationally

invariant kernels F on the sphere Sd−1, though the generalization is clear.

Theorem 4.2.1. Assume that F is a real-analytic function on [−1,1], such that σ is not a

minimizer of IF , i.e. F is not (up to an additive constant) positive definite on Sd−1. Let µ be

a minimizer of IF , then (supp(µ))◦ = /0. Moreover, if d = 2, then supp(µ) must be discrete.

In order to prove this theorem, we need the following lemma (see, e.g. [KP02, MT]):

Lemma 4.2.2 (Principle of Analytic Continuation). Let M be a real-analytic manifold, and

f : M→ R be real-analytic. If f is constant on an open set of M, then f is constant on all

of M. Moreover, if the manifold is one-dimensional, then it suffices that f is constant on

some U ⊆M that has an accumulation point in M.

Proof of Theorem 4.2.1. Suppose, indirectly, that (supp(µ))◦ 6= /0. By Theorem 3.1.7, we
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know that the potential

U µ

F (x) =
∫

Sd−1

F(〈x,y〉)dµ(y)

is constant on supp(µ). Since F(〈x,y〉) is real-analytic on Sd−1× Sd−1, U µ

F (x) is real-

analytic on Sd−1. Since U µ

F is real-analytic and constant on an open set in Sd−1, it is

constant on all of Sd−1, by Lemma 4.2.2. In addition, Uσ
F (x) = IF(σ) is constant on Sd−1

due to rotational invariance. We then obtain

IF(µ) =
∫

Sd−1

∫
Sd−1

F(〈x,y〉)dµ(y)dµ(x) =
∫

Sd−1

U µ

F (x)dµ(x) =
∫

Sd−1

U µ

F (x)dσ(x)

=
∫

Sd−1

∫
Sd−1

F(〈x,y〉)dµ(y)dσ(x) =
∫

Sd−1

∫
Sd−1

F(〈x,y〉)dσ(x)dµ(y)

=
∫

Sd−1

Uσ
F (x)dµ(y) = IF(σ).

This is clearly a contradiction, as by the assumption, IF is not minimized by σ . Our first

claim then follows.

For S1, Lemma 4.2.2 tells us that if U µ

F is constant on a set {z1,z2, ...} ⊂ S1 with an

accumulation point, U µ

F is constant on S1. The proof of our second claim then follows as

above.

If Sd−1 is replaced with one of the projective spaces FPd−1, we can derive a similar

result.

In the spirit of Theorem 4.2.1, as well as Corollary 3.4.2, it may be tempting to con-

jecture that if F (not necessarily analytic) is not positive definite on Sd−1 (up to constant),

i.e IF(µ) is not minimized by σ , then the support of any minimizer of IF must have empty

interior. However, this is not true, as the following simple example shows.

Example 4.2.3. Assume that F ∈C([−1,1]) is constant near t = 1 and strictly decreasing
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otherwise, i.e. it satisfies for some fixed γ ∈ (0,1),

F(1) = F(t ′) = min
t∈[−1,1]

F(t) for any t ′ ∈ [1− γ,1],

and F(t ′)> F(1) for all t ′ ∈ [−1,1− γ). It is then evident that for any z ∈ Sd−1

min
µ∈P(Sd−1)

IF(µ) = IF
(
δz
)
= F(1),

and IF(σ) > IF(δz), i.e. σ is not a minimizer of IF . Let C(z,h) = {x ∈ Sd−1 : 〈x,z〉 > h}

denote the spherical cap of “height” h centered at z ∈ Sd−1. Let ν be the normalized

uniform measure on C(z,h), i.e.

dν(x) =
1C(z,h)(x)

σ
(
C(z,h)

)dσ(x),

with h = 1− γ

4 . Then for each x,y ∈C(z,h), we have 〈x,y〉> 1− γ , and hence

IF(ν) = IF
(
δz
)
= F(1),

i.e. ν is also a minimizer of IF , but its support has non-empty interior.

Applications to Polynomial Energies

We observe that the results of Sections 4.1 and 4.2 apply if F is a polynomial. Indeed, The-

orem 4.2.1 is applicable since polynomials are analytic, while the conditions of Theorem

4.1.3 hold because the Gegenbauer expansion has only finitely many terms. We summa-

rize these statements in the following corollary. As in the preceding sections, this can be

generalized to the other two-point homogeneous spaces.
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Corollary 4.2.4. Assume that F is a polynomial whose Gegenbauer expansion is

F(t) =
m

∑
n=0

anCλ
n (t).

1. There exists a discrete minimizer µ ∈ P(Sd−1) with

∣∣supp(µ)
∣∣≤ 1+ ∑

{n: an>0, 1≤n≤m}
dim(H d

n ).

2. If, moreover, σ is not a minimizer of IF over P(Sd−1), i.e. there exists n ≥ 1 such

that an < 0, then the support of any minimizer of IF has empty interior. For S1, the

support is finite.

We observe that when an ≥ 0 for n = 1, . . . ,m, i.e. F is a polynomial that is positive

definite on Sd−1 (up to constant), the statement of Theorem 4.1.3 (and hence also part (1)

of the above corollary) is known. In this case, the discrete minimizers µ = ∑wziδzi are

exactly weighted spherical m-designs, see Section 2.6.

Existence of weighted m-designs of cardinality
m

∑
n=0

dim(H d
n ) has been shown in [Tch57,

Rog62]. A certain well-known generalization of this fact can also be easily deduced from

part (1) of Corollary 4.2.4. Let N ⊂ N0 with 0 ∈N . Call a set {zi}N
i=1 ⊂ Sd−1 with pos-

itive weights ωzi a weighted N -design if for every m ∈N and every spherical harmonic

Y ∈H d
m one has

N

∑
i=1

ωziY (zi) =
∫

Sd−1

Y (x)dσ(x).

When N = {0,1, . . . ,m}, this definition coincides with the definition of a weighted m-

design. Such objects arise naturally for some configurations. For example, the 600-cell,

one of the six 4-dimensional convex regular polytopes with vertices which form a 120-

point subset of S3, yields an exact cubature formula for spherical harmonics of degrees up

to 19, excluding degree 12 (see, e.g., [CK07, Section 7]). In other words, it is an N -design

for N = {0,1, . . . ,11} ∪ {13, . . . ,19}. By taking an > 0 only for n ∈ N and applying
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part (1) of Corollary 4.2.4, one easily concludes existence of weighted N -designs on the

sphere Sd−1 of cardinality at most ∑n∈N dim(H d
n ). This statement is encompassed by

more general results [Tch57, Rog62].

Theorem 4.1.3 and part (1) of Corollary 4.2.4 vastly generalize these well-known state-

ments, essentially showing that the addition of any number of negative definite terms does

not destroy the statement: discrete minimizers with the same cardinality still exist.

4.3 Linear Programming and Optimality of Tight Designs

Though results such as Theorem 4.0.3 are useful in showing that minimizers of some en-

ergy must be discrete, and results along the lines of Theorem 4.1.3 tell us that discrete

minimizers of a certain cardinality must exist, it would be ideal to determine what those

minimizers are. The main goal of this section is to show that for those dimensions d and

values of M for which tight designs exist, these measures minimize the energy IF for a large

class of potentials F . We will use linear programming bounds, discussed below, to this end.

The main result of this section is the following:

Theorem 4.3.1. Let F be absolutely monotonic of degree M, with F(M+1)(t) ≤ 0 for t ∈

(−1,1). Then for a tight M-design C , the measure

µC :=
1
|C | ∑

x∈C
δx

is a minimizer of

IF(µ) =
∫
Φ

∫
Φ

F(τ(x,y))dµ(x)dµ(y)

over P(Φ).
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Linear Programming

In the 1970s, Delsarte developed a method to bound codes on finite fields that yielded

an upper bound on the kissing numbers and upper bounds for the size of spherical codes

given minimal distance as solutions to linear programs [Del73]. This linear programming

method provides bounds for optima in various optimization problems, and its use is often

aided by computational tools, where a problem is approximated by a finite-dimensional

or discretized counterpart, then solved with a computer. Despite being a relatively simple

method, it often provides optimal bounds, such as those in Theorem 2.6.6. In particular,

the linear programming method has been used to find the kissing number in dimensions

8 and 24 by Odlyzko and Sloane [OS79], and independently by Levenshtein [Lev79], as

well as in dimension 4 by Musin [Mus08]. This technique applies to all the compact two-

point homogeneous spaces Φ described in Section 2.4. Our application of the method can

be summed up in the following lemma, which is a measure-theoretic counterpart of the

linear programming bound of Yudin [Yud92]. In what follows, we will use the notion from

Section 2.4, i.e. Cn is the appropriate normalized Jacobi polynomial of degree n, and ĥn is

the corresponding coefficient in the Jacobi expansion of h.

Lemma 4.3.2. Let h ∈C([−1,1]) be positive-definite modulo a constant, i.e.

h(t) =
∞

∑
n=0

ĥnCn(t)

with ĥn ≥ 0 for all n≥ 1.

1. Assume that h(t)≤ F(t) for all t ∈ [−1,1]. Then for any µ ∈ P(Φ),

IF(µ)≥ ĥ0 = Ih(η).

2. Assume further that h is a polynomial of degree k and that there exists a k-design
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C ⊂Φ such that h(t) = F(t) for each t ∈A (C ). Then for any µ ∈ P(Φ),

IF(µ)≥ IF

( 1
|C | ∑

x∈C
δx

)
,

i.e. IF is minimized by the uniform distribution on C .

Proof. For the first part observe that

IF(µ)≥ Ih(µ)≥ Ih(η) = ĥ0,

where the first inequality follows from the fact that F ≥ h, while the second one is due to

Proposition 3.4.1, since h is positive definite modulo a constant.

For the second part, one can continue as follows

Ih(η) = Ih

( 1
|C | ∑

x∈C
δx

)
= IF

( 1
|C | ∑

x∈C
δx

)
.

The first equality follows from the fact that C is a k-design, and the second from the fact

that F and h coincide on the set A (C ). Together with part (1) this proves the statement in

part (2).

This lemma provides insights in two different ways for how the linear programming

method can be applied. If a candidate C is available, one can apply part (2) of Lemma

4.3.2 by constructing a polynomial h ≤ F as a Hermite interpolant of the function F at

the points of A (C ). This reasoning, which lies behind the proof of Theorems 4.3.1 and

6.2.3, explains the appearance of tight designs: indeed, the number of elements in the set of

interpolation points (i.e. distinct distances between the points of C ) determines the degree

of the interpolant h – hence one wants a design of high strength, but low degree.

The same reasoning as above applies to the emergence of sharp designs as universally

optimal sets in [CK07], and it also explains why this slightly weaker notion does not suffice

for our purposes: since we are working with general measures rather than point sets with
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fixed cardinality, we cannot avoid interpolating at the point t = 1, which requires a design of

higher strength. The main technical difficulty in this setting is proving positive definiteness

of the Hermite interpolating polynomial h. We take this approach to Theorem 4.3.1 and

carry out the technicalities in the following subsections.

If a suitable candidate is not available, one can still rely on part (1) of Lemma 4.3.2

and attempt to optimize the value of the energy Ih(η) over auxiliary polynomials h (i.e.

polynomials h satisfying the conditions of Lemma 4.3.2), obtaining a lower bound for the

energy over all probability measures. If the degree of an auxiliary function h is bounded by

D, we have D+1 non-negative variables ĥi, 0≤ i≤D, and infinitely many linear constraints

h(t) ≤ F(t) for all t ∈ [−1,1]. In order to get the best possible lower bound, we need to

maximize ĥ0 given these linear conditions. This particular method will be used in Sections

7.2.

This problem is, generally, intractable as a linear optimization problem. However, when

F is a polynomial, the condition F(t)− h(t) ≥ 0 for all t ∈ [−1,1] may be represented

as a finite-size positive semi-definite constraint on the coefficients ĥi. In particular, the

polynomial inequality may be rewritten as a sum-of-squares optimization problem (see, for

instance, [Nes00]) and thus solved as a semi-definite program.

Properties of Orthogonal Polynomials

Recall that, for fixed Φ, we write simply Cn(t) = C(α,β )
n (t) and have Cn(1) = 1. In some

of the arguments below we will use instead the monic Jacobi polynomials, which we will

denote as Qn(t) = Q(α,β )
n (t).

We now collect several results about orthogonal polynomials relevant to the proof of

Theorem 4.3.1 and which are presented and covered in greater detail in [CK07]. Fix a space

Φ, and let α and β be the corresponding parameters of the associated Jacobi polynomials.

According to Proposition 3.4.1, positive definiteness on Φ is equivalent to the positivity of

coefficients in the monic Jacobi expansion, i.e. the expansion with respect to Q(α,β )
n .
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It will be useful to consider adjacent Jacobi polynomials, defined as one of the three

sequences Qk,l
n = Q(α+k,β+l)

n with k, l ∈ {0,1}, k + l > 0. Specifically, we will need the

following corollary which comes out of representing Q1,0
n through Q0,0

n [Lev92, equation

(3.4)]:

Proposition 4.3.3. Adjacent Jacobi polynomials Q1,0
n are positive definite on Φ.

On the other hand, adjacent polynomials Q1,1
n , defined as orthogonal with respect to the

measure (1− t2)dν(α,β ), are not positive definite on Φ. The following property, a special

case of the strengthened Krein condition [Lev98, Lemma 3.22], can serve as a substitute.

Lemma 4.3.4. (t +1)Q1,1
n (t) are positive definite on Φ for n≥ 0.

Proof. For all n ∈ N0, (t + 1)Q1,1
n is orthogonal to all polynomials of degree less than n

with respect to the measure (1− t)dν(α,β ) = cα,β dν(α+1,β ), so it can be expressed through

the orthogonal polynomials corresponding to dν(α+1,β ) as

(t +1)Q1,1
n (t) = Q1,0

n+1(t)+bQ1,0
n (t),

for some constant b. Since all the roots of Q1,0
n lie in (−1,1), sgn Q1,0

n (−1) = (−1)n.

Substituting t = −1 in the last equation gives Q1,0
n+1(−1)+ bQ1,0

n (−1) = 0, and so b ≥ 0.

By Proposition 4.3.3, each Q1,0
n (t) is positive definite, and thus (t+1)Q1,1

n (t) is also positive

definite.

Lastly, we will need the strict positive-definiteness of polynomials annihilated by sub-

sets of roots of Qn + γQn−1, which is provided by the following result.

Proposition 4.3.5 ([CK07, Theorem 3.1]). Let µ ∈B(R) such that all polynomials are

integrable with respect to µ and for all polynomials p,
∫
R
(p(t))2dµ(t)> 0 if p is not iden-

tically zero. Set p0(t), p1(t), ... to be a sequence of monic orthogonal polynomials for µ

such that deg(pk) = k for all k ∈ N. If t1 < .. . < tn are the zeros of pn + γ pn−1 for some
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fixed γ , then the polynomials

k

∏
i=1

(t− ti), 1≤ k < n,

can be represented as a linear combination of p0(t), p1(t), . . . , pn(t) with positive coeffi-

cients.

Hermite Interpolation

Let F ∈ CB[a,b], for some B ∈ N0, and let a collection t1 < .. . < tm ⊂ [a,b], as well as

positive integers k1, . . . ,km be given with

max{k1, . . . ,km} ≤ B+1.

There exists a polynomial p of degree less than D = ∑
m
i=1 ki, such that for 1≤ i≤m and

0≤ k < ki,

p(k)(ti) = F(k)(ti).

Such a p is called the Hermite interpolating polynomial that agrees with F to order ki at

each ti (we will simply call it the Hermite interpolating polynomial for short); it always

exists and is unique because the linear map that takes a polynomial p of degree less than D

to

(p(t1), p′(t1), . . . , p(k1−1)(t1), p(t2), p′(t2), . . . , pkm−1(tm))

is bijective.

It is convenient to organize both the collection t1 < .. . < tm and the orders of derivatives

k1, . . . ,km into a polynomial g(t). Given such a polynomial

g(t) =
m

∏
i=1

(t− ti)ki (4.8)
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where D = deg(g) ≥ 1, we write H [F,g] for the interpolating polynomial of degree less

than D that agrees with F at each ti to the order ki.

We can now state an important remainder formula for Hermite interpolation [Dav63,

Theorem 3.5.1].

Lemma 4.3.6. Suppose that F ∈ CB[a,b]∩CD(a,b) and g is as in (4.8). Then for each

t ∈ [a,b], there exists ξ ∈ (a,b) such that min(t, t1, ..., tm)< ξ < max(t, t1, ..., tm) and

F(t)−H[F,g](t) =
F(D)(ξ )

D!
g(t). (4.9)

Similarly, we let

Q[F,g](t) =
F(t)−H [F,g] (t)

g(t)
,

be the divided difference associated with the polynomial g. Since, for 1≤ i≤ m,

F(t)−H[F,g](t) = O((t− ti)ki)

as t → ti, it follows that Q[F,g] extends to a continuous function at the roots of g. If we

assume that F ∈CD(a,b), then the continuity of F(D) and Lemma 4.3.6 implies that for all

t ∈ [a,b], there there exists some ξ ∈ (a,b) such that min(t, t1, ..., tm)< ξ <max(t, t1, ..., tm)

and

Q[F,g](t) =
F(D)(ξ )

D!
. (4.10)

We can enumerate the roots of g with multiplicities in increasing order, and denote

these by s j,1≤ j ≤D, where s j ≤ s j+1. Let g∗n be the polynomial annihilated on the first n

elements of the sequence s1, . . . ,sD:

g∗n(t) =
n

∏
j=1

(t− s j), 1≤ n≤ D.

The usual assignment of the empty product applies here: g∗0(t) = 1.
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By the Newton’s formula [DL93, Chapter 4.6–7], the Hermite interpolating polynomial

H [F,g] can be represented as

H [F,g] (t) = F(s1)+
D−1

∑
j=1

g∗j(t)Q[F,g∗j ](s j+1). (4.11)

It will be convenient to introduce notation for this number of nonnegative derivatives of

a function.

Definition 4.3.7. Let F ∈CD(a,b). We say that F is absolutely monotonic of degree D if

F(k)(t)≥ 0 for 0≤ k ≤ D and t ∈ (a,b). If these derivatives are positive, we say that F is

strictly absolutely monotonic of degree D.

The benefit of these nonnegative derivatives lies in the fact that the Hermite interpolant

of an absolutely monotonic function, F , of degree D with negative (D+1)st derivative will

stay below F , as shown in the following observation.

Lemma 4.3.8. Let F : [−1,1]→R be absolutely monotonic of degree D, and F(D+1)(t)≤ 0

for all t ∈ (−1,1). If the roots of a polynomial g of the form (4.8) (and thus of degree D)

are contained in [−1,1], and, in addition, g(t)≤ 0 for t ∈ [−1,1], then,

F(t)≥ H[F,g](t), t ∈ [−1,1].

Proof. According to Lemma 4.3.6, for all t ∈ [−1,1] there exists ξ ∈ (−1,1) such that

min(t, t1)< ξ < max(t, tm), where the roots of g are t1 < .. . < tm, and

F(t)−H[F,g](t) =
F(D+1)(ξ )

(D+1)!
g(t).

The expression on the right is nonnegative, so the conclusion of the lemma follows.
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Optimality of Tight Designs

As above, Φ is a compact, connected two-point homogeneous space and Q0,Q1,Q2, . . .

are the corresponding monic orthogonal polynomials. Recall that Qn are orthogonal with

respect to the measure dν(α,β ) = 1
γα,β

(1− t)α(1+ t)β dt, where the parameters α , β are

chosen as in Section 2.4.

In what follows, we give a proof of the Theorem 4.3.1, splitting it into two separate

cases, depending on whether the code C contains two points separated by the diameter of

Φ, or, equivalently, depending on the parity of the strength M of C .

Proposition 4.3.9. Theorem 4.3.1 holds when M = 2m, m≥ 1.

Proof. Let −1≤ t1 < .. . < tm < tm+1 = 1 be the values within A (C ) and define

gk(t) :=
k

∏
i=1

(t− ti), 1≤ k ≤ m+1.

and

g(t) := gm(t)gm+1(t) = (t−1)g2
m(t) (4.12)

To prove the statement of the proposition, we verify the following chain of inequalities,

satisfied for arbitrary µ ∈ P(Φ), similar to the proof of Lemma 4.3.2,

IF(µ)≥ IH[F,g](µ)≥ IH[F,g](η) = IH[F,g](µC ) = IF(µC ). (4.13)

The equality IH[F,g](η)= IH[F,g](µC ) follows since C is a design of strength 2m≥ degH[F,g].

The last equality holds since H[F,g] agrees with F at the cosines of distances occurring in

C . Since g(t)≤ 0 for t ∈ [−1,1], Lemma 4.3.8 implies that F(t)≥H[F,g](t) for t ∈ [−1,1],

which gives the first inequality. It remains to show the second inequality: it will follow from

the positive definiteness of H[F,g], which we will now demonstrate.

For any n < m, the degree of gm+1(t)Qn(t) is at most 2m. As C is a 2m-design, for

every fixed y ∈ C we have that
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1∫
−1

gm+1(t)Qn(t)dν
(α,β )(t) =

∫
Φ

gm+1(τ(x,y))Qn(τ(x,y))dη(x)

=
1
|C | ∑

x∈C
gm+1(τ(x,y))Qn(τ(x,y))

=
1
|C |

m+1

∑
i=1

cigm+1(ti)Qn(ti) = 0

since, by construction, gm+1 is annihilated on all the ti. The constants ci are given by

ci = |{x ∈ C | τ(x,y) = ti}|.

Since both gm+1 and Qm+1 are monic and gm+1 is orthogonal to each Qn for n < m, we

conclude that

gm+1(t) = Qm+1(t)+ γQm(t),

for some γ ∈ R. By Proposition 4.3.5, subproducts of factors of gm+1, which we denote

by gk, 1≤ k ≤m, can be expressed as linear combinations of Qn with positive coefficients,

and therefore are positive definite.

According to Newton’s formula (4.11), the Hermite interpolant of F can be expressed as

the sum of partial products of factors of g multiplied by the appropriate divided difference.

We will use this formula to show that H[F,g] is positive definite. Indeed, (4.11) gives

H [F,g] (t) = F(t1)+
m

∑
k=1

(
gk(t)gk−1(t)Q [F,gkgk−1] (tk)+g2

k(t)Q
[
F,g2

k
]
(tk+1)

)
, (4.14)

where, as usual, g0 = 1. Observe that the divided differences in the last equation are non-

negative due to (4.10), as the function F is absolutely monotonic of degree 2m. Since we

have shown that each gk is positive definite, Schur’s theorem implies that so are g2
k and

gkgk+1, and it follows that H[F,g] is positive definite as well.

Before turning to the proof of Theorem 4.3.1 for tight designs of odd strength, recall
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the definition of the adjacent polynomials Q1,1
n = Q(α+1,β+1)

n for n ≥ 0. They are monic

and orthogonal with respect to the measure

dν
(α+1,β+1)(t) =

1
γα+1,β+1

(1− t)α+1(1+ t)β+1dt =
γα,β

γα+1,β+1
(1− t2)dν

(α,β )(t).

Proposition 4.3.10. Theorem 4.3.1 holds when M = 2m−1, m≥ 1.

Proof. Suppose that C ⊂ Φ is a tight (2m− 1)-design. As discussed in Section 2.6 tight

designs of odd strength necessarily contain antipodal points, i.e. there exist x,y ∈ C such

that ϑ(x,y) = π and thus −1 ∈A (C ). Let −1 = t1 < .. . < tm < tm+1 = 1 be the values of

A (C ), and set

w(t) =
m

∏
j=2

(t− t j)

and

g(t) = w2(t)(t2−1). (4.15)

As in the proof of Proposition 4.3.9, we need to verify the inequalities (4.13). Applying

Lemma 4.3.8 to H[F,g] gives the first inequality; it remains to show positive-definiteness

of H[F,g].

For n < m− 1, the degree of (1− t2)w(t)Q1,1
n (t) is at most 2m− 1, so for any y ∈ C

there holds

γα+1,β+1

γα,β

1∫
−1

w(t)Q1,1
n (t)dν

(α+1,β+1) =
∫
Φ

(1− τ
2(x,y))w(τ(x,y))Q1,1

n (τ(x,y))dη(x)

=
1
|C | ∑

x∈C
(1− τ

2(x,y))w(τ(x,y))Q1,1
n (τ(x,y))

=
1
|C |

m+1

∑
j=1

c j(1− t2
j )w(t j)Q1,1

n (t j) = 0

as (1− t2)w(t) is annihilated on the cosines of distances from C . Because w(t) is a degree
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(m− 1) monic polynomial, the above implies w(t) = Q1,1
m−1(t). By Proposition 4.3.5, this

also means that for 2≤ k≤m−1, polynomials ∏
k
j=2(t−t j) are linear combinations of Q1,1

n

with positive coefficients. Since the cone of functions with nonnegative Jacobi coefficients

with respect to Q1,1
n is closed under multiplication, for 2≤ k≤m, polynomials ∏

k
j=2(t−t j)

2

and (t− tk)∏
k−1
j=2(t− t j)

2 also have nonnegative Jacobi coefficients in Q1,1
n . Due to Lemma

4.3.4, since t− t1 = t +1, we obtain that

ak(t) := (t− t1)(t− tk)
k−1

∏
j=2

(t− t j)
2 and bk(t) := (t− t1)

k

∏
j=2

(t− t j)
2, (4.16)

are linear combinations of Q(α,β )
n with positive coefficients; that is, they are positive definite

on Φ for 1≤ k ≤ m.

We conclude by the same observations as in the proof of Proposition 4.3.9; in particular,

the positive definiteness of the Hermite interpolant H[F,g] follows from the representation

H [F,g] (t) = F(t1)+b1(t)Q[F,b1](t2)

+
m

∑
k=2

(
ak(t)Q [F,ak] (tk)+bk(t)Q [F,bk] (tk+1)

)
,

(4.17)

combined with the absolute monotonicity of F to degree 2m−1, which implies positivity

of the divided differences Q.

Example 4.3.11. As an example of another application of Theorem 4.3.1, consider the

case that F(t) = a+ bt + ct2 + dt3 is given as the potential function. In this case, some

elementary considerations show that if

(i) d ≤ 0,

(ii) c≥−3d,

(iii) c2−3bd ≥ 0,

(iv) −c−
√

c2−3bd ≤ 3d, and,
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(v) −c+
√

c2−3bd ≥ 3d,

then F is absolutely monotonic of degree 2 up to a constant. Hence, the energy of any

potential function of the above form on a two-point homogeneous space Φ is minimized by

a tight 2-design. Note that the constant term can be ignored, so it suffices to only consider

the sign of derivatives. In particular, if b> 0 and d becomes sufficiently small in magnitude,

the above inequalities will hold.

As discussed earlier this chapter, we would like to determine conditions for which all

minimizers of an energy are discrete, as well as characterize the minimizers whenever

possible. This is possible when F is strictly absolutely monotonic of degree M and tight

M-designs exist, as then the tight designs are exactly the minimizers of IF .

Theorem 4.3.12. Suppose that a tight M-design C minimizes the F-energy integral, for

F strictly absolutely monotonic of degree M and such that F(M+1)(t) < 0 for t ∈ (−1,1).

Then any minimizer of IF must be a tight M-design.

Proof. The argument developed to prove Theorem 4.3.1 may be described concisely through

the following string of inequalities

IF(µ)≥ IH[F,g](µ)≥ IH[F,g](η) = IH[F,g](µC ) = IF(µC ),

where g is of the form (4.12) or (4.15), as is appropriate. In order for IF(µ) = IF(µC )

to hold, the inequalities must be equalities. The first inequality can only be sharp in the

case that A (supp(µ)) ⊆ A (C ). This follows from the fact that H[F,g](t) < F(t) for all

t 6∈ A (C ) by the remainder formula from Lemma 4.3.8. In particular, this shows that

|supp(µ)| is finite.

We now wish to show that the second inequality is sharp only when µ is a weighted

design of at least the strength of the minimizing tight design. We first note that since F

is strictly absolutely monotonic, the divided differences appearing in (4.14) or (4.17) are
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all positive due to (4.10). Thus, H[F,g] (possibly modulo a constant) is a linear combi-

nation, with positive coefficients, of positive definite polynomials of degrees 0,1, ...,M ,

so H[F,g] = a0 +∑
M
j=1 a jC j, where a j > 0 for j > 0. We see that µ must indeed be a

weighted M-design, and due to Theorem 2.6.6 and the fact that C is a tight M-design,

|supp(µ)| ≥ |C |. Lemmas 2.6.3 and 2.6.5 then tell us that this is only possible if

|A (supp(µ))| ≥ |A (C )|.

Thus, the distance sets must be the same, and therefore so are the cardinalities of the sets,

making supp(µ) a tight M-design. Since µ is a weighted M-design, it must be a tight

M-design.

Causal Variational Principle

We now turn to another application of the linear programming method. Define the kernel

F(t) = Fτ(t) := max{0,2τ
2(1+ t

)(
2− τ

2(1− t)
)
}. (4.18)

for τ > 0. The minimization problem for the energy

IF(µ) =
∫
S2

∫
S2

F(〈x,y〉)dµ(x)dµ(y) (4.19)

is known as the causal variational principle on the sphere and is connected to relativistic

quantum field theory. It is conjectured in [FS13] that there exist discrete minimizers for

τ ≥ 1 and, moreover, that all the minimizers of (4.19) are discrete whenever τ >
√

2. The

background on this problem can be found in [FS13, BFSvdM19].

Here we confirm this conjecture for two values of τ > 0, for which we can show that

the cross-polytope (or orthoplex) and the icosahedron indeed minimize the energy, which

was suggested by numerical experiments in [FS13]. The proofs are another application of
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the linear programming framework. In this instance, Hermite interpolation is unavailable

to us as F is not differentiable on (−1,1). However, as we are dealing with a single kernel,

instead of a class of them as in the previous section, we need only construct the correct

auxiliary function.

We address the cross-polytope first. When τ =
√

2, we have

Fτ(t) = max{0,8t2 +8t},

and thus Fτ(0) = 0. Setting the measure

ν =
1
6

3

∑
i=1

(
δei +δ−ei

)
,

where {e1,e2,e3} is an orthonormal basis of R3, i.e. ν is a measure whose mass is equally

concentrated in the vertices of a cross-polytope, we have the following:

Proposition 4.3.13. The measure ν is a minimizer for the energy IF√2
over P(S2) .

Proof. The function

h(t) = 8t2 +8t.

is positive definite on S2 and clearly satisfies

h(t)≤ F√2(t) for all t ∈ [−1,1],

and

h(−1) = F√2(−1) = 0, h(0) = F√2(0) = 0, h(1) = F√2(1) = 16,

so that h coincides with F√2 on the set A (supp(ν)).

We obtain that for any measure µ ∈ P(S2),

IF√2
(µ)≥ Ih(µ)≥ Ih(σ) = Ih(ν) = IF√2

(ν),
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where we have used the fact that h(t) ≤ F√2(t) for t ∈ [−1,1], so IF√2
(µ) ≥ Ih(µ). Since

h is positive definite, according to Proposition 3.4.1, we have that σ minimizes Ih, i.e.

Ih(µ)≥ Ih(σ). We have also used that the cross-polytope is a 3-design and h is a quadratic

polynomial, hence Ih(σ) = Ih(ν). Finally, h(t) = F√2(t) for t ∈ A (supp(ν)) = {0,±1},

hence Ih(ν) = IF√2
(ν).

We now focus on the case of the icosahedron. Here we set τ =
√

2
√

5√
5−1

so that Fτ(
1√
5
) =

0. Let C ⊂ S2 be the vertices of a regular icosahedron and let

ν =
1

12 ∑
x∈C

δx

be the uniform measure on the vertices of the icosahedron.

Proposition 4.3.14. The measure ν is a minimizer for the energy, IFτ
, over P(S2) for τ =√

2
√

5√
5−1

.

Proof. We shall need two facts about the icosahedron: namely that the set of inner products

between elements of C is A (C ) =
{
±1,±1/

√
5
}

, and C is a 5-design. For simplicity let

us consider the function F(t) = Fτ (t)
Fτ (1)

so that F(1) = 1 (which does not effect the minimiz-

ers).

We construct the following polynomial:

h(t) =
5(5−

√
5)

32
t4 +

5
8

t3 +
3
√

5−5
16

t2− 1
8

t +
1−
√

5
32

=
5−
√

5
28

C4(t)+
1
4

C3(t)+
20+3

√
5

84
C2(t)+

1
4

C1(t)+
1

12
C0(t),

where Ck are the standard Legendre polynomials (i.e. the Gegenbauer polynomials C
1
2
k ).

We observe then that h is positive definite, and that h(t) ≤ F(t) for −1 ≤ t ≤ 1, which

follows from the factored form

h(t) =
5

32
(5−
√

5)(t +1)(t− 1√
5
)(t +

1√
5
).
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A glance at this formula gives h≤ F for t ∈ [−1, 1√
5
], and the fact that F−h is a polynomial

with roots

t =−1,
1√
5
,
−1±4

√
10+4

√
5√

5
,

gives h≤ F for t ∈ [ 1√
5
,1] which is a subset of the interval [ 1√

5
, −1+4

√
10+4

√
5√

5
].

By construction, the function h (which was obtained by solving the linear equations

h(t) = F(t) for t =±1,±1/
√

5, as well as h′(−1/
√

5) = 0) has a local maximum at − 1√
5

and coincides with F on the set A (C ) =
{
±1,±1

√
5
}

. The same argument as in the proof

of Proposition 4.3.13 finally shows

IF(ν) = inf
µ∈P(S2)

IF(µ),

i.e. the icosahedron minimizes the energy IFτ
for τ2 = 2

√
5√

5−1
.
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Chapter 5

Stolarsky-type Principles

In numerous areas of mathematics and other sciences, one is faced with the problem of

distributing large finite sets of points in a set Ω as uniformly as possible. There exist

various quantitative measures of uniformity of point distributions. It should be evident

from our discussion of Riesz energies in Section 2.1 that energy is one. Another popular

candidate is discrepancy. We will focus on the sphere in this chapter, but a more complete

exposition on general Discrepancy Theory can be found in [DT97, Mat99].

Let ωN = {z1, ...,zN} ⊂ Sd−1. For a given subset of the sphere, A⊂ Sd−1, the discrep-

ancy of ωN with respect to A is defined as

D(ωN ,A) =
1
N

N

∑
k=1

1A(zk)−σ(A), (5.1)

in other words, D(ωN ,A) indicates how well the Lebesgue measure of A is approximated

by the counting measure 1
N ∑

N
k=1 δzk . To obtain good finite distributions ωN , one usually

evaluates and strives to minimize the supremum (extremal discrepancy) or average (e.g., L2

discrepancy) of |D(ωN ,A)| over some rich and well-structured collection of sets A. Typical

examples of such collections include spherical caps, slices, convex sets, etc. – the specific

choice depends on the problem at hand.

It is known that in some cases these two ways of quantifying equidistribution are closely
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connected. One of the first instances of such a connection was obtained in 1973 by Sto-

larsky [Sto73], who proved that minimizing the L2 discrepancy with respect to spherical

caps is equivalent to maximizing the pairwise sum of Euclidean distances, i.e. ED(ωN).

More precisely, he established the identity

cd[DL2,cap(ωN)]
2 =

∫
Sd−1

∫
Sd−1

||x− y||dσ(x)dσ(y) − 1
N2

N

∑
i, j=1
||zi− z j||,

which came to be known as the Stolarsky Invariance Principle (see section 5.1 for more

details).

Recently, there has been a spike in interest in applications, analogues, and generaliza-

tions of the Stolarsky Invariance Principle in different settings: Brauchart and Dick stud-

ied it from the point of view of numerical integration on the sphere [BD13], Bilyk and

Lacey connected it to tessellations of the sphere in [BL17], Basu, He, Owen, and Zhao

used it in applications to genomics [HBZO19], Skriganov explored Stolarsky principles

in general compact metrics space, proving an analogue of the result in projective spaces

in [Skr17, Skr20], and Barg and Skriganov further explore this on the Hamming Cube in

[Bar20, BS21]. In [BD19, BDM18, BMV], Bilyk, Dai, Vlasiuk, and the author explore a

generalization of the Stolarsky Invariance Principle from the context of energy optimiza-

tion. The results of these papers make up the bulk of this chapter.

We note that the basic strategy behind most versions of Stolarsky principle, at a very

low level, is straightforward. Computing the L2 discrepancy, one squares out the expression

in (5.1), thus pairwise interactions between points of ωN arise from cross terms of the

form 1A(zi) · 1A(z j). When integrated over the test sets A in a given class, this yields

the interaction potential K(zi,z j), which is often represented as the volume of intersection

of test sets “centered” at zi and z j, see e.g. (5.8), however, the details in some settings

get rather technical. This approach is employed in Sections 5.1 and 5.2. A similar idea

has been used by Torquato [Tor10] for “number variance”, a quantity very similar to L2
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discrepancy. In Section 5.3 we go in the opposite direction and show that for any positive

definite interaction potential one can construct an appropriate notion of discrepancy, so that

a version of the Stolarsky principle holds.

In Section 5.1, we revisit the classical Stolarsky Invariance Principle. In Section 5.2, we

observe that by replacing all spherical caps with hemispheres one obtains a variant of the

Stolarsky Invariance Principle involving the Geodesic Riesz (−1)-energy. This allows one

to easily characterize the finite point sets on Sd−1 which maximize the sum of geodesic dis-

tances in all dimensions d ≥ 2. We then take this idea a step further and show that our ana-

logue of the Stolarsky Invariance Principle holds for general probability measures, which

points to a drastic difference between the geodesic and Euclidean Riesz (−1)-energies. We

finish the section with a discussion of the Geodesic Riesz s-energies for s < 0.

In Section 5.3, we explore the connections between energy optimization and discrep-

ancy on a more general level, showing that for any positive definite function F , one can

define a natural notion of discrepancy so that an analogue of the Stolarsky Invariance Prin-

ciple holds for general probability measures. In Section 5.4, we take this a step further,

showing that a similar result holds on all compact metric spaces.

5.1 Stolarsky Invariance Principle

We consider “spherical caps” C(x,h) with center x ∈ Sd−1 and “height” h ∈ [−1,1], i.e.

C(x,h) = {z ∈ Sd−1 : 〈z,x〉> h}.

We define the L2 discrepancy of ωN = {z1, ...,zN} with respect to spherical caps by

[DL2,cap(ωN)]
2 =

1∫
−1

∫
Sd−1

∣∣∣∣ 1
N

N

∑
j=1

1C(x,h)(z j)−σ
(
C(x,h)

)∣∣∣∣2dσ(x)dh. (5.2)

The following result was proved by Stolarsky in 1973 [Sto73]:
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Theorem 5.1.1 (Stolarsky Invariance Principle). Let ωN = {z1,z2, . . . ,zN} ⊂ Sd−1. Then

the following relation holds:

[DL2,cap(ωN)]
2 =Cd−1

( ∫
Sd−1

∫
Sd−1

‖x− y‖dσ(x)dσ(y) − 1
N2

N

∑
i, j=1
‖zi− z j‖

)
. (5.3)

The constant Cd−1 satisfies

Cd−1 =
1
2

∫
Sd−1

|〈p,z〉|dσ(z) =
1

d−1
Ad−2

Ad−1
=

Vold−1

Ad−1

=
1

d−1
Γ
(
d/2
)

√
π Γ((d−1)/2)

∼ 1√
2π(d−1)

as d→ ∞,

(5.4)

where Ad−1 is the surface area of Sd−1, Vold is the volume of the unit ball in Rd , and p is

an arbitrary point on the sphere Sd−1.

This theorem states that

• minimizing the L2 spherical cap discrepancy of ωN is equivalent to maximizing the

sum of Euclidean distances between the points of ωN .

• the L2 spherical cap discrepancy can be realized as the difference between the contin-

uous and discrete energies IF(σ)−EF(ωN), with F(〈x,y〉) = ||x−y||=
√

2−2〈x,y〉,

or, equivalently, the error of numerical integration of the distance integral

ID1(σ) =
∫

Sd−1

∫
Sd−1

‖x− y‖dσ(x)dσ(y)

by the cubature formula with knots at the points of ωN .

It is well known [Bec84a, Bec84b] that the optimal order of the L2 spherical cap dis-

crepancy is N−
1
2−

1
2(d−1) , i.e.

cd−1N−
1
2−

1
2(d−1) ≤ inf

ωN⊂Sd−1
DL2,cap(ωN)≤ c′d−1N−

1
2−

1
2(d−1) , (5.5)
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which in turn bounds the difference of continuous and discrete energies in (5.3).

In addition to the original proof in [Sto73], an alternative proof has been given in

[BD13]. Here we present a new short and simple proof of the Stolarsky invariance prin-

ciple (5.3) [BDM18]. It strongly resonates with the proof in [BD13], but is completely

elementary in nature. A similar proof in a probabilistic interpretation has been indepen-

dently given in [HBZO19] (compare Lemmas 5.1.2 and 5.1.3 below to Proposition 1 of

[HBZO19]), and analogous ideas are used in [Skr17] on compact, connected, two-point

homogeneous spaces and [Bar20] for the Hamming Cube.

The proof of (5.3) follows the aforementioned strategy: one squares out the integrand,

and the discrete part (pairwise interactions) arises naturally from the cross terms. The

important ingredient is the following relation between intersections of spherical caps and

the Euclidean distance between their centers:

Lemma 5.1.2. For arbitrary x,y ∈ Sd−1 we have

1∫
−1

∫
Sd−1

1C(x,h)(z) ·1C(y,h)(z)dσ(z)dh =

1∫
−1

σ
(
C(x,h)∩C(y,h)

)
dh = 1−Cd−1‖x− y‖,

(5.6)

where the constant Cd−1 is given by (5.4).

Proof. We have

1∫
−1

σ
(
C(x,h)∩C(y,h)

)
dh =

1∫
−1

∫
Sd−1

1C(x,h)(z) ·1C(y,h)(z)dσ(z)dh

=
∫

Sd−1

1∫
−1

1C(z,h)(x) ·1C(z,h)(y)dhdσ(z)

=
∫

Sd−1

min{〈x,z〉,〈y,z〉}∫
−1

dhdσ(z)

=
∫

Sd−1

(
min{〈x,z〉,〈y,z〉}+1

)
dσ(z).
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We now write min{〈x,z〉,〈y,z〉}= 1
2

(
〈x,z〉+〈y,z〉−

∣∣〈(x−y),z〉
∣∣). Clearly,

∫
Sd−1
〈x,z〉dσ(z)=∫

Sd−1
〈y,z〉dσ(z) = 0 and by rotational invariance, we observe that

∫
Sd−1

∣∣〈(x− y),z〉
∣∣dσ(z) = ‖x− y‖ ·

∫
Sd−1

∣∣∣∣〈 x− y
‖x− y‖

,z
〉∣∣∣∣ dσ(z) = 2Cd−1‖x− y‖,

and this finishes the proof.

Here we essentially repeated the proof from [BD13], but the proof of the next lemma,

which gives the quadratic mean value of the size of the spherical caps, is simpler (does not

use reproducing kernels).

Lemma 5.1.3. For any p ∈ Sd−1 we have

1∫
−1

(
σ
(
C(p,h)

))2 dh = 1−Cd

∫
Sd−1

‖x− p‖dσ(x), (5.7)

Proof. It is clear that

∫
Sd−1

‖x− p‖dσ(x) =
∫

Sd−1

∫
Sd−1

‖x− y‖dσ(x)dσ(y).

We use the result of the previous lemma, i.e. relation (5.6), to compute

1−Cd−1

∫
Sd−1

‖x− p‖dσ(x) =
∫

Sd−1

(
1−Cd−1‖x− p‖

)
dσ(x)

=
∫

Sd−1

1∫
−1

∫
Sd−1

1C(x,h)(z) ·1C(p,h)(z)dσ(z)dhdσ(x)

=

1∫
−1

∫
Sd−1

1C(p,h)(z)

 ∫
Sd−1

1C(z,h)(x)dσ(x)

 dσ(z)dh

=

1∫
−1

(
σ
(
C(p,h)

))2 dh.
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This is one of numerous examples of a situation in which averaging over scales simplifies

computations. For the L2 discrepancy for spherical caps of fixed height h:

D(h)
L2,cap(ωN) :=

 ∫
Sd−1

∣∣∣∣ 1
N

N

∑
j=1

1C(x,h)(z j)−σ
(
C(x,h)

)∣∣∣∣2dσ(x)

1/2

, (5.8)

one would have to deal with σ
(
C(x,h)∩C(y,h)

)
, which has complicated structure, and no

short relation akin to (5.6) is available, see e.g. [HBZO19]. Hence in this case, there is no

formula as succinct and explicit as the Stolarsky principle, however one can still write down

a generic relation where the interactions between z j’s would involve σ
(
C(zi,h)∩C(z j,h)

)
.

Proposition 5.1.4. For any ωN = {z1,z2, . . . ,zN} ⊂ Sd−1 and a fixed h ∈ [−1,1], the fol-

lowing relation holds

[
D(h)

L2,cap(ωN)
]2

=
1

N2

N

∑
i, j=1

σ
(
C(zi,h)∩C(z j,h)

)
−
(
σ
(
C(p,h)

))2
, (5.9)

where p ∈ Sd−1 is arbitrary.

Proof. We note that σ
(
C(x,h)

)
is independent of x ∈ Sd−1, hence

[
D(h)

L2 (ωN)
]2

=
∫

Sd−1

∣∣∣∣ 1
N

N

∑
j=1

1C(x,h)(z j)−σ
(
C(x,h)

)∣∣∣∣2dσ(x) (5.10)

=
1

N2

N

∑
i, j=1

∫
Sd−1

1C(x,h)(zi) ·1C(x,h)(z j)dσ(x)

− 2
N

∫
Sd−1

N

∑
j=1

1C(z j,h)(x) ·σ
(
C(x,h)

)
dσ(x)+

(
σ
(
C(p,h)

))2

=
1

N2

N

∑
i, j=1

σ
(
C(zi,h)∩C(z j,h)

)
−
(
σ
(
C(p,h)

))2
.
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Integrating identity (5.9) with respect to h, as

[DL2,cap(ωN)]
2 =

1∫
−1

[D(h)
L2,cap(ωN)]

2dh,

and applying relations (5.6) and (5.7) we finish the proof of the Stolarsky principle (5.3).

5.2 Hemispheric Stolarsky Principle and Geodesic Riesz

s-Energy

In this section, we see that by restricting to only hemispheres, we produce a new invariance

principle that involves the discrete geodesic Riesz (−1)-energy in place of the standard

Riesz (−1)-energy. This allows one to characterize the finite point sets on Sd−1 which

maximize the sum of geodesic distances (see Theorem 5.2.10). This can be taken one

step further to show that this analogue of the Stolarsky Invariance Principle holds for gen-

eral probability measures, providing a way to characterize the maximizers of the continu-

ous geodesic Riesz (−1)-energy Iϑ∗−1
. This brings up a surprising difference between the

geodesic and standard Riesz (−1)-energies. Writing the negative geodesic Riesz (−1)-

kernel as a function of the Euclidean distance

−ϑ
∗
−1(x,y) =−

2
π

arccos(〈x,y〉) =− 2
π

arccos
(

1− ||x− y||2

2

)

we see it has the same order of repulsion as −D−1, i.e.

lim
r→0+

− 2
π

arccos
(

1− r2

2

)
r

=
4
π
. (5.11)
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Thus, both −D−1 and −ϑ ∗−1 are strongly repulsive, with γ = 1 in the notation of Theorem

4.0.4. This might lead one to think that the maximizers of Iϑ∗−1
and ID−1 would exhibit

similar behavior. However, any symmetric measure is optimal in the former case, which

includes both discrete and absolutely continuous measures, while only the uniform measure

σ maximizes the latter energy.

Hemispheric Stolarsky Principle

An (open) hemisphere in the direction of x∈ Sd−1 is simply a spherical cap of height h = 0:

H(x) = {z ∈ Sd−1 : 〈z,x〉> 0}=C(x,0). (5.12)

Since σ
(
H(x)

)
= 1

2 , the natural L2 discrepancy for this set system is

DL2,hem(ωN) :=

 ∫
Sd−1

∣∣∣∣ 1
N

N

∑
j=1

1H(x)(z j)−
1
2

∣∣∣∣2dσ(x)

1/2

= D(0)
L2,cap(ωN). (5.13)

While, as mentioned above, generally the quantity σ
(
C(x,h)∩C(y,h)

)
is complicated, in

the case h = 0 (hemispheres) it has a very simple representation: for x,y ∈ Sd−1

σ
(
H(x)∩H(y)

)
= σ

(
C(x,0)∩C(y,0)

)
=

1
2
·
(

1−ϑ
∗(x,y)

)
, (5.14)

where

ϑ
∗(x,y) :=

ϑ(x,y)
π

(5.15)

is the normalized geodesic distance on the sphere between x and y. This can be very easily

seen from Figure 5.1.

Combining (5.14), Proposition 5.1.4 and the fact that
∫

Sd−1

∫
Sd−1

ϑ ∗(x,y)dσ(x)dσ(y) = 1
2 ,

one arrives at the following result:
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x
y

ϑ ∗(x,y)

σ(Hx∩Hy) =
1
2(1−ϑ ∗(x,y))

Figure 5.1: The size σ(Hx∩Hy) of the intersection of two hemispheres depends linearly on
the geodesic distance ϑ ∗(x,y).

Theorem 5.2.1 (Stolarsky Principle for Hemispheres). For any ωN ∈ Sd−1, the following

relation holds:

[DL2,hem(ωN)]
2 =

1
2

 ∫
Sd−1

∫
Sd−1

ϑ
∗(x,y)dσ(x)dσ(y)− 1

N2

N

∑
i, j=1

ϑ
∗(zi,z j)

 . (5.16)

The statement looks strikingly similar to the original Stolarsky principle (5.3). One can

say that the Euclidean distance corresponds to the mean over t ∈ [−1,1], while the geodesic

distance corresponds to the median (h = 0) of the heights of the spherical caps. Despite the

fact that the original Stolarsky principle was proved in 1973, the Hemispheric version has

only been discovered very recently, and independently, in [Skr17] and [BDM18]. Relation

(5.16) has several interesting features and consequences.

Sum of Geodesic Distances

First of all, the principle of irregularities of distribution, discussed in great detail in [BC87],

does not hold in this situation, that is, the hemisphere discrepancy can be very small, even

zero, for large N. Indeed, for any symmetric distribution ωN , it is easy to see that the L2
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hemisphere discrepancy is equal to zero. Moreover, (5.16) allows us to characterize finite

point distributions in Sd−1, which maximize the sum of geodesic distances.

Theorem 5.2.2. Let d ≥ 2. Then the following holds:

1. For any point distribution ωN = {z1, . . . ,zN} ⊂ Sd−1,

1
N2

N

∑
i, j=1

ϑ
∗(zi,z j)≤

1
2
. (5.17)

2. For a given N ∈ N the sum above is maximized if and only if the following condition

holds: for any x ∈ Sd−1, such that the hyperplane x⊥ contains no points of ωN , the

numbers of points of ωN on either side of x⊥ differ by at most one, i.e.

∣∣∣|ωN ∩H(x)|− |ωN ∩H(−x)|
∣∣∣≤ 1. (5.18)

3. If N is even,

max
ωN⊂Sd−1

1
N2

N

∑
i, j=1

ϑ
∗(zi,z j) =

1
2
, (5.19)

and this maximum is achieved if and only if ωN is a centrally symmetric set.

4. If N is odd,

max
ωN⊆Sd−1

1
N2

N

∑
i, j=1

ϑ
∗(zi,z j) =

1
2
− 1

2N2 , (5.20)

and this maximum is achieved if and only if ωN can be represented as a union ωN =

Z1∪Z2, where Z1 is symmetric, while Z2 lies on a two-dimensional hyperplane (i.e.

on a great circle) and satisfies

1
M2 ∑

zi,z j∈Z2

ϑ
∗(zi,z j) =

1
2
− 1

2M2 ,

where M = |Z2|. In other words, Z2 is a maximizer of the sum of geodesic distances

on S1.
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Before we turn to the proof of the theorem, we briefly discuss the history of these

questions. The problem of maximizing the sum of geodesic distances on the sphere was

first introduced by Fejes Tóth in [FT59]. In his work, Fejes Tóth proved parts (3) and (4)

on S1 and conjectured that they held on S2 (which he showed for N ≤ 6). This conjecture

was proven for N even (i.e. part (3)) soon after by Sperling [Spe60], and later for odd N

(i.e. part (4)) by Nielsen [Nie65]. An earlier proof of part (4) for d = 3 was provided by

Larcher in [Lar62], however, there is a mistake in his proof (statement (ii) at the bottom of

page 48). Kelly then proved the bounds (5.19) and (5.20) for all N and in all dimensions

in [Kel70], though no characterization of maximizers was found. Though parts (1) and

(2) can be inferred from parts (3) and (4), they were recently proven directly for d = 2 in

[Jia08] in relation to musical rhythms.

Our Stolarsky principle (5.16) allows us to directly prove parts (1) and (2), and makes

the proofs of (5.19) and (5.20) simple in all dimensions d ≥ 2. Moreover, we can now

provide a characterization of maximizers, something that was previously known only for

d ≤ 3. In the case of odd N, we exploit a spherical version of the Sylvester–Gallai theorem

(an interesting result from combinatorial geometry), much as Nielsen did in their paper

[Nie65], though the main methods are different. We now turn to the proof of Theorem

5.2.2.

Proof. Part (1) of the theorem is now obvious since the left-hand side of (5.16) is non-

negative and
∫

Sd−1

∫
Sd−1

ϑ ∗(x,y)dσ(x)dσ(y) = 1
2 .

Part (2) also follows easily from (5.16). Indeed, for every x∈ Sd−1 such that x⊥ does not

contain any points of ωN , the minimal value of the integrand in the left-hand side of (5.16),

i.e. the integrand in (5.13), equals 0 for even N (if exactly half the points lie on either side

of x⊥), and is 1
4N2 for odd N (if the numbers of points on both sides of x⊥ differ exactly

by 1). Obviously, configurations ωN for which this is achieved for each such x ∈ Sd−1 are

possible: e.g., bN/2c and dN/2e points in antipodal poles. Moreover, if for some x ∈ Sd−1

with x⊥∩ωN = /0 this condition is not satisfied, then it also fails on a small set of positive
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measure around x, hence DL2,hem(ωN) is not minimal, and therefore 1
N2 ∑ϑ ∗(zi,z j) is not

maximized.

To prove part (3), first observe that symmetric sets ωN trivially satisfy the condition

of part (2). Now assume that for some x ∈ Sd−1 the number of points of ωN located at x

and −x is not the same. Consider a hyperplane passing through x, which contains no other

points of ωN . Perturbing the hyperplane in opposite directions, we find that the difference

of number of points on either side changes by at least 2, i.e. cannot stay equal to zero. Thus

non-symmetric sets ωN with an even number of points do not satisfy the condition of part

(2), and so cannot maximize the sum of geodesic distances.

We now turn to part (4). We shall rely on the Sylvester–Gallai theorem. In the Euclidean

case it states the following: if a finite set ωN in Rd has the property that for every two points

of ωN , the straight line passing through them contains at least one other point of ωN , then

all points of ωN lie on the same straight line. A spherical version of this theorem also holds.

Theorem 5.2.3 (Spherical Sylvester–Gallai Theorem). Assume that a set ωN of N points

on the sphere Sd−1 contains no antipodal points and satisfies the following condition: for

every two points of ωN , the great circle passing through them contains at least one more

point of ωN . Then all points of ωN lie on the same great circle.

For the history and several proofs of these theorems we refer the reader to the book

[AZ14, pages 73 and 88]. Normally, these theorems are stated in dimension d = 3, but

higher dimensional extensions are simple. Indeed, for ωN ⊂ Sd−1, consider a copy of S2

which contains z1, z2, z3 ∈ ωN . The lower-dimensional version of Theorem 5.2.3 applies,

and hence z1, z2, z3 lie on the same great circle. In the same manner, considering a copy of

S2 containing this great circle and any other point zi ∈ ωN , we find that zi has to lie on the

same great circle.

We are now ready to prove part (4). Assume that N is odd. It follows from (5.16) and

the proof of part (2) that the maximal value of 1
N2 ∑ϑ ∗(zi,z j) is 1

2 −
1

2N2 . Observe that
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adding a pair of antipodal points to ωN does not change maximality of ωN , i.e. ωN is a

maximizer if and only if ωN ∪{p,−p} is a maximizer (with N replaced by N +2). Indeed,

since ϑ ∗(x, p)+ϑ ∗(x,−p) = 1, it is easy to check that

∑
x,y∈ωN∪{−p,p}

ϑ
∗(x,y) = ∑

x,y∈ωN

ϑ
∗(x,y)+2(N +1),

thus the second sum equals N2

2 −
1
2 if and only if the first sum is (N+2)2

2 − 1
2 . This immedi-

ately proves sufficiency of the condition in (4). Moreover, it shows that, in order to prove

necessity, it is enough to consider maximizers without antipodal points and to prove that

they have to be contained in some great circle.

Assume that ωN maximizes 1
N2 ∑ϑ ∗(zi,z j) and contains no pair of antipodal points.

Consider two arbitrary points z1, z2 ∈ ωN , and assume that no other point of ωN lies on the

great circle defined by z1 and z2. Since ωN is finite, there exists a hyperplane containing z1

and z2, which does not contain any other points of ωN . Since z1 and z2 are not antipodal,

one can perturb the hyperplane in such a way that it does not touch other points of ωN and

both points z1 and z2 end up on the same side of the hyperplane. Perturbing in the opposite

direction, we observe that the difference between the numbers of points on opposite sides

of the hyperplane changes by 4, and therefore cannot stay equal to ±1, so by part (2), ωN

cannot be a maximizer.

We thus conclude that, for any two points of ωN , at least one other point of ωN has to

lie on the same great circle, i.e. the spherical Sylvester–Gallai theorem, Theorem 5.2.3,

applies. Hence ωN is contained in a great circle.

Remark: Observe that the one-dimensional maximizers of odd cardinality N, which arise

in part (4) of Theorem 5.2.2, are characterized by the condition that the sum of any dN/2e

consecutive central angles defined by the points is at least π . In particular, any acute triangle

is a maximizer for d = 2 and N = 3.

Theorem 5.2.2 demonstrates that the situation is drastically different from the spherical
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cap discrepancy and the sum of Euclidean distances. In the latter case, minimizing the L2

spherical cap discrepancy (equivalently, maximizing the sum of Euclidean distances) leads

to a rather uniform distribution of ωN [Bec84a, Bec84b, Mat99]. In particular, for d = 2

the sum is maximized by the vertices of a regular N-gon [FT56], and in higher dimensions

maximizing distributions have to be well-separated [Sto75]. The sum of geodesic distances,

however, may be maximized by very non-uniform sets, e.g. N/2 points in two antipodal

poles.

Geodesic Distance Energy Integral

We now turn our sights to the problem of finding equilibrium distributions of the geodesic

distance energy integral. As in the discrete case, we are interested in the maximum value

of the energy Iϑ∗ , as well as the maximizers of this expression. The former follows from

Theorem 5.2.2 and the weak∗ density of discrete measures in P(Sd−1):

max
µ∈P(Sd−1)

Iϑ∗(µ) = lim
n→∞

sup
ωN⊂Sd−1

Eϑ∗(ωN) =
1
2
. (5.21)

One possible way to determine maximizing measures would be to show that the Gegen-

bauer expansion of F(〈x,y〉) = 1
2 −ϑ ∗(x,y) satisfies the conditions of part (3) of 3.5.2, so

symmetric measures are uniquely optimal. However, we shall instead provide a proof mak-

ing use of our Hemisphere Stolarsky principle (i.e. Theorem 5.2.1), which may be extended

to more general measures than the counting measure µ = 1
N ∑

N
i=1 δzi .

Theorem 5.2.4 (Hemisphere Stolarsky principle for general measures). Let µ ∈ P(Sd−1).

Then the following relation holds

∫
Sd−1

(
µ
(
H(x)

)
− 1

2

)2

dσ(x) =
1
2
·
(

1
2
− Iϑ∗(µ)

)
. (5.22)
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Proof. Notice that

∫
Sd−1

∫
H(x)

dµ(y)dσ(x) =
∫

Sd−1

∫
H(y)

dσ(x)dµ(y) =
1
2
·
∫

Sd−1

dµ(y) =
1
2

and, according to (5.14),

∫
Sd−1

∫
H(x)

∫
H(x)

dµ(y)dµ(z)dσ(x) =
∫

Sd−1

∫
Sd−1

σ
(
H(y)∩H(z)

)
dµ(y)dµ(z)

=
∫

Sd−1

∫
Sd−1

1
2
·
(
1−ϑ

∗(y,z)
)

dµ(y)dµ(z) =
1
2
− 1

2
Iϑ∗(µ).

Using the two relations above we obtain

∫
Sd−1

(
µ
(
H(x)

)
− 1

2

)2

dσ(x) =
∫

Sd−1

( ∫
H(x)

∫
H(x)

dµ(y)dµ(z)−
∫

H(x)

dµ(y)+
1
4

)
dσ(x)

=
1
2
− 1

2
Iϑ∗(µ)−

1
2
+

1
4
=

1
2
·
(

1
2
− Iϑ∗(µ)

)
,

which proves (5.22).

Since the left-hand side of identity (5.22) is non-negative, Theorem 5.2.4 provides an-

other way of showing that Iϑ∗(µ)≤ 1
2 for all probability measures, and an immediate nec-

essary condition to achieve that bound:

Corollary 5.2.5. Measures µ ∈ P(Sd−1) for which Iϑ∗(µ) =
1
2 , are exactly the measures

which satisfy the following condition:

µ
(
H(x)

)
=

1
2

for σ -a.e. x ∈ Sd−1. (5.23)

It is easy to see that if the measure µ is symmetric, it is a maximizer of the energy Iϑ∗ .

Consider the reflection of a measure µ , which we will call µ∗, i.e. µ∗(E) = µ(−E). It is

easy to see that
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Iϑ∗(µ,µ
∗) =

∫
Sd−1

∫
Sd−1

ϑ
∗(x,y)dµ(x)dµ

∗(y) =
∫

Sd−1

∫
Sd−1

ϑ
∗(x,−y)dµ(x)dµ(y)

=
∫

Sd−1

∫
Sd−1

(
1−ϑ

∗(x,y)
)
dµ(x)dµ(y) = 1− Iϑ∗(µ).

If, moreover, µ is symmetric, i.e. µ∗ = µ , then Iϑ∗(µ) =
1
2 , as

Iϑ∗(µ) = Iϑ∗(µ,µ
∗) = 1− Iϑ∗(µ). (5.24)

Therefore, in particular, every symmetric measure µ ∈ P(Sd−1) satisfies (5.23). The

converse of this fact is less obvious.

Proposition 5.2.6. Assume that the measure µ ∈ P(Sd−1) satisfies the condition

µ
(
H(x)

)
=

1
2

for σ -a.e. x ∈ Sd−1. (5.25)

Then the measure µ is symmetric, i.e. µ(E) = µ(−E) for every Borel set E ⊆ Sd−1.

The proof for this Proposition is based on spherical harmonics and Gegenbauer poly-

nomials and requires the following auxiliary lemma, which will also be used in Section

5.3.

Lemma 5.2.7. Let γ be a finite signed Borel measure on Sd−1 and F ∈ L2([−1,1],wλ ) with

λ = d−3
2 . Assume that

∫
Sd−1

F(〈x,y〉)dγ(y) = 0 for σ -almost every x ∈ Sd−1. (5.26)
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Assume also that F̂(n,λ ) 6= 0 for some n≥ 1. Then for every spherical harmonic Yn ∈H d
n ,

∫
Sd−1

Yn(y)dγ(y) = 0. (5.27)

Proof. Applying the Funk-Hecke formula (2.29), we find that

∫
Sd−1

Yn(y)dγ(y) =
1

F̂(n,λ )

∫
Sd−1

∫
Sd−1

F(〈x,y〉)Yn(x)dσ(x)dγ(y)

=
1

F̂(n,λ )

∫
Sd−1

( ∫
Sd−1

F(〈x,y〉)dγ(y)
)

Yn(x)dσ(x) = 0.

Proof of Proposition 5.2.6. Let µ∗ be the reflection of µ , defined by µ∗(E) = µ(−E), and

set γ = µ−µ∗. Condition (5.25) then implies that

γ
(
H(x)

)
=
∫

Sd−1

1(0,1](〈x,y〉)dγ(y) = 0 for σ -a.e. x ∈ Sd−1.

The Gegenbauer coefficients F̂(n,λ ) of the function F(t) = 1(0,1](t) are non-zero for odd n

(Lemma 3.4.6 in [Gro96]). Therefore, according to Lemma 5.2.7, relation (5.27) holds for

all odd n. For even values of n, the relation also holds, since Yn ∈H d
n is an even function

in this case, and γ is antisymmetric. Therefore,
∫

Sd−1
Y (y)dγ(y) = 0 for every polynomial

Y , and hence for each Y ∈ C(Sd−1), which implies that γ = 0. Hence µ = µ∗, i.e. µ is

symmetric.

From the above discussion we obtain the following characterization of the maximizers

of Iϑ∗(µ):

Theorem 5.2.8. For a measure µ ∈ P(Sd−1),

Iϑ∗(µ) = sup
γ∈P(Sd−1)

Iϑ∗(γ) =
1
2
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if and only if µ is centrally symmetric.

This behavior of Iϑ∗(µ) goes in sharp contrast with the behavior of the seemingly

similar energy integral
∫

Sd−1

∫
Sd−1
‖x− y‖dµ(x)dµ(y). It is known [Bjö56] that the unique

maximizer of this energy integral is µ = σ , the uniform distribution on Sd−1. In this

sense the behavior of Iϑ∗(µ) is more similar (albeit still different) to that of
∫

Sd−1

∫
Sd−1
‖x−

y‖2 dµ(x)dµ(y) which is maximized by any measure with center of mass at the origin,

which may be easily seen from the relation

∫
Sd−1

∫
Sd−1

‖x− y‖2 dµ(x)dµ(y) = 2−2 ·
∥∥∥∥ ∫
Sd−1

xdµ(x)
∥∥∥∥2

. (5.28)

It is thus natural to analyze the Geodesic Riesz s-energy for general powers s < 0, and

contrast it with the standard Riesz s-energies, discussed in Section 2.1.

Geodesic Riesz s-Energy

We would like to understand which measures µ ∈ P(Sd−1) maximize the Geodesic Riesz

s-energy

Iϑ∗s (µ) =
∫

Sd−1

∫
Sd−1

(
ϑ
∗(x,y)

)−s dµ(x)dµ(y), (5.29)

for s < 0, and how maximizers depend on s. The case of 0 < s < d− 1 was studied by

Bilyk and Dai in [BD19], where they found that σ was the unique minimizer of Iϑ∗s .

While the study of the geodesic Riesz s-energies is quite recent, the Riesz s-energies

for Euclidean distance are well investigated, as discussed in Section 2.1. In addition to the

properties of maximizers given in Theorem 2.1.2 for general compact spaces, Björck was

able to further refine his results in the case Ω = Sd−1.

Theorem 5.2.9 ([Bjö56]). For s < 0, the maximizers of the Euclidean Riesz s-energy

IDs(µ) =
∫

Sd−1

∫
Sd−1

‖x− y‖−s dµ(x)dµ(y)
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over µ ∈ P(Sd−1) can be characterized as follows:

1. 0 > s >−2: the unique maximizer of IDs(µ) is µ = σ .

2. s =−2: IDs(µ) is maximized if and only if the center of mass of µ is at the origin.

3. s <−2: IDs(µ) is maximized if and only if µ = 1
2(δp +δ−p), i.e. the mass is equally

concentrated at two antipodal poles.

The proof of part (1) uses potential analysis, in particular, the semigroup property of

the Riesz potentials; part (2) is explained in (5.28); and part (3) follows from part (2) and

simple linear programming bounds.

We observe that there is a “breaking point” s =−2 in the behavior of maximizers of the

Euclidean Riesz s-energy. Surprisingly, for the seemingly similar geodesic Riesz s-energy,

this critical value is different: s =−1. We have the following theorem:

Theorem 5.2.10. For s < 0, the maximizers of the geodesic Riesz s-energy

Iϑ∗s (µ) =
∫

Sd−1

∫
Sd−1

(
ϑ
∗(x,y)

)−s dµ(x)dµ(y)

over µ ∈ P(Sd−1) can be characterized as follows:

1. 0 > s >−1: the unique maximizer of Iϑ∗s (µ) is µ = σ .

2. s =−1: Iϑ∗s (µ) is maximized if and only if µ is centrally symmetric .

3. s <−1: Iϑ∗s (µ) is maximized if and only if µ = 1
2(δp +δ−p), i.e. the mass is equally

concentrated at two antipodal poles.

Part (1) is proved in [BD19] through extensive analysis of spherical harmonic expan-

sions. Part (2) is the result of Theorem 5.2.8 above, which is a consequence of the hemi-

sphere Stolarsky principle (5.22). The proof of part (3) is quite simple, following from
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Lemma 4.3.2: since ϑ ∗(x,y)≤ 1, we have for s <−1

Iϑ∗s (µ)≤
∫

Sd−1

∫
Sd−1

ϑ
∗(x,y)dµ(x)dµ(y)≤ 1

2
.

The first inequality turns into an equality when (µ × µ)
{
(x,y) : ϑ ∗(x,y) = 0 or 1

}
= 1,

while the second bound becomes exact when µ is symmetric, according to part (2). This

readily implies that µ = 1
2(δp +δ−p).

This peculiar effect (that geodesic distance energy behaves differently from its Eu-

clidean counterpart) was previously noticed in dimension d = 2, i.e. on the circle, in

[BHS12], where the one-dimensional case of parts (1) and (3) of the above theorem have

been proved.

5.3 The Generalized Stolarsky Principle for the Sphere

In this section we turn to a generalization of the Stolarsky Invariance Principle for posi-

tive definite functions. Assume that F ∈C([−1,1]) is positive definite, λ = d−2
2 , and the

function f ∈ L2([−1,1],wλ ) is as in Corollary 2.5.2, i.e.

F(〈x,y〉) =
∫

Sd−1

f (〈x,z〉) f (〈z,y〉)dσ(z).

For a Borel probability measure µ ∈ P(Sd−1) we define the L2 discrepancy of µ with

respect to f as

DL2, f (µ) =

 ∫
Sd−1

∣∣∣ ∫
Sd−1

f (〈x,y〉)dµ(y)−
∫

Sd−1

f (〈x,y〉)dσ(y)
∣∣∣2 dσ(x)

 1
2

. (5.30)
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The L2 discrepancy of a finite point-set ωN ⊂ Sd−1 is simply

DL2, f (ωN) = DL2, f

( 1
N

N

∑
j=1

δz j

)
=

 ∫
Sd−1

∣∣∣ 1
N

N

∑
i=1

f (〈x,zi〉)−
∫

Sd−1

f (〈x,y〉)dσ(y)
∣∣∣2 dσ(x)

 1
2

.

Notice that various choices of f recover different geometric notions of discrepancy (e.g.,

1(h,1] for spherical caps of a fixed height, see (5.9)), although this object is more general.

We now prove a general version of the Stolarsky principle, which connects the energies

with respect to F with the L2 discrepancy built upon f .

Theorem 5.3.1 (Generalized Stolarsky principle). Let µ ∈ P∗(Sd−1), i.e. a signed Borel

probability measure, and let F be positive definite with f as in (3.16). Then

IF(µ)− IF(σ) = D2
L2, f (µ). (5.31)

In particular, in the case of µ = 1
N ∑

N
i=1 δzi , this relation becomes

1
N2

N

∑
i, j=1

F(〈zi,z j〉)−
∫

Sd−1

∫
Sd−1

F(〈x,y〉)dσ(x)dσ(y) = D2
L2, f (ωN). (5.32)

Proof. According to the definition of DL2, f (µ), (3.16), and Lemma 3.2.3, we have

D2
L2, f (µ) =

∫
Sd−1

( ∫
Sd−1

f (〈x,y〉)d(µ−σ)(y)
)2

dσ(x)

=
∫

Sd−1

∫
Sd−1

∫
Sd−1

f (〈x,y〉) f (〈x,z〉)d(µ−σ)(y)d(µ−σ)(z)dσ(x)

=
∫

Sd−1

∫
Sd−1

F(〈y,z〉)d(µ−σ)(y)d(µ−σ)(z) = IF(µ−σ) = IF(µ)− IF(σ).

This approach brings up several novel points. First of all, in most contexts the Stolarsky

identity arises from the notion of the L2 discrepancy, which in turn dictates the specific
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form of the interaction potential F . Theorem 5.3.1, on the other hand, allows one to go

in the opposite direction: starting with the positive definite potential F , one can produce a

natural notion of discrepancy, for which the Stolarsky principle holds. The precise form of

the function f , defined through the identity
(

f̂ (n,λ )
)2

= F̂(n,λ ), cannot be made explicit

in most cases (in fact, many different choices of f corresponding to the same F can be

constructed by changing the signs of the coefficients f̂ (n,λ )). However, this does not

prevent one from being able to obtain estimates for DL2, f (µ), as shown by Bilyk and Dai

in [BD19] (Theorem 4.2, part (ii)).

Proposition 5.3.2. Suppose that F is positive definite and f ∈ L2
wλ
([−1,1]) is as in Corol-

lary 2.5.2. Then there exist cd−1,c′d−1 > 0 such that for all N ∈ N,

c′d−1 min
1≤k≤cd−1N

1
d−1

F̂(k,λ )≤ inf
ωN⊂Sd−1

D2
L2, f (ωN)≤ N−1 max

0≤θ≤cd−1N−
1

d−1

F(1)−F(cosθ)

(5.33)

Hence, e.g., lower bounds can be proved using information about either F or f . In

[BD19], the authors use these estimates to give an alternative proof of the spherical cap

discrepancy bounds (5.5), and employ (5.32) to obtain sharp asymptotic behavior of the

difference between discrete and continuous energies, EF(ωN)− IF(σ), as the number of

points N→∞, both in the case of Euclidean Riesz energies, F(〈x,y〉)=Ds(x,y) (recovering

results of [Wag92, KS98, Bra06]), and the geodesic Riesz energies, F(〈x,y〉) = ϑ ∗s (x,y),

introduced in [BD19, BDM18].

Since D2
L2, f (µ) ≥ 0, the generalized Stolarsky identity (5.31) gives yet another proof

that for F positive definite, the uniform measure σ is a minimizer of IF over P(Sd−1) (in

fact, over P̃(Sd−1)). Furthermore, the identity also provides an alternative way of showing

that F having all positive Gegenbauer coefficients implies that σ is the unique minimizer

of IF . Indeed, without loss of generality, we may assume that F̂(0,λ ) > 0. Assume also

that for each n ≥ 1, we have f̂ (n,λ ) = (F̂(n,λ ))1/2 6= 0. Let µ be a minimizer of IF(µ),

129



i.e. IF(µ) = IF(σ). Therefore, the Stolarsky principle (5.31) implies that D2
L2, f (µ) = 0, i.e.

∫
Sd−1

f (〈x,y〉)d(σ −µ)(y) = 0

for σ -almost every x. Then by Lemma 5.2.7, relation (5.27), with γ = σ − µ , holds for

every polynomial, and thus for every Y ∈ C(Sd−1). Hence σ is the unique minimizer of

IF(µ).

5.4 The Generalized Stolarsky Principle on Compact Met-

ric Spaces

The generalized Stolarsky principle on the sphere, Theorem 5.3.1, extends to arbitrary

compact domains without significant difficulty.

Let (Ω,ρ) be a compact metric space and let us fix a measure µ ∈ P(Ω) – this will

usually be an energy minimizing (equilibrium) measure or an invariant measure (its role

is similar to that of σ in the spherical case). We now define the L2 discrepancy of an

arbitrary probability measure ν ∈ P(Ω) (or even a signed measure ν ∈ P̃(Ω)) relative to

the equilibrium measure µ with respect to the function k : Ω×Ω→ R by the identity

D2
L2,k,µ(ν) =

∫
Ω

∣∣∣∣∫
Ω

k(x,y)dν(y)−
∫
Ω

k(x,y)dµ(y)
∣∣∣∣2dµ(x)

=
∫
Ω

∣∣∣∣∫
Ω

k(x,y)d
(
ν−µ

)
(y)
∣∣∣∣2dµ(x).

(5.34)

When ν is the equal-weight discrete measure associated to the N-point set ωN = {z1, ...,zN}⊂

Ω, i.e. ν =
1
N

N

∑
i=1

δzi , this becomes the discrepancy of the set ωN with respect to k:

D2
L2,k,µ(ωN) = D2

L2,k,µ

( 1
N

N

∑
i=1

δzi

)
=
∫
Ω

∣∣∣∣ 1
N

N

∑
i=1

k(x,zi)−
∫
Ω

k(x,y)dµ(y)
∣∣∣∣2dµ(x) (5.35)
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Observe that changing the function k by an additive constant does not change the value of

the discrepancy.

We can now obtain the following general version of the Stolarsky Invariance Principle:

Theorem 5.4.1. Let K be a positive definite (modulo and additive constant C) kernel on

Ω×Ω. Let us assume that µ ∈P(Ω) is a K-invariant measure with full support ( supp(µ) =

Ω). Then for every measure ν ∈ P̃(Ω), we have the following identity.

IK(ν)− IK(µ) = D2
L2,k,µ(ν), (5.36)

where the function k ∈ L2(Ω×Ω,µ × µ) is as in part (5) of Theorem 3.3.2 applied to the

positive definite kernel K +C.

In particular, for a discrete set ωN = {z1, ...,zN} ⊂Ω,

EK(ωN)− IK(µ) = D2
L2,k,µ(ωN). (5.37)

This theorem has the following immediate corollary:

Corollary 5.4.2. Let K be a kernel on Ω×Ω. Assume that µ ∈ P(Ω) is a global minimizer

of the energy functional IK over P(Ω) with supp(µ) = Ω̃ ⊆ Ω. Then identity (5.36) holds

for any signed measure ν with total mass one, whose support is contained in the support of

µ , i.e. ν ∈ P̃(Ω̃). Similarly, relation (5.37) holds for any point set ωN = {z1, ...,zN} ⊂ Ω̃.

Proof. If µ is a global minimizer of IK , by Theorem 3.1.7, the potential U µ

K is constant on

Ω̃, i.e. µ is K-invariant and has full support if viewed as an element of P(Ω̃). Moreover,

according to Lemma 3.1.11, the kernel K is positive definite (modulo a constant) on Ω̃.

Therefore, the statement follows directly from Theorem 5.4.1 applied to Ω̃ in place of

Ω.

We now turn to the proof of the generalized Stolarsky principle:
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Proof of Theorem 5.4.1. Without loss of generality, we can assume that K is positive defi-

nite, since adding a constant to K does affects neither the invariance of µ nor the difference

IK(ν)− IK(µ). We can now use the crucial identity (3.10) of Lemma 3.2.3, as well as part

(5) of Theorem 3.3.2, to obtain

IK(ν)− IK(µ) = IK(ν−µ) =
∫
Ω

∫
Ω

K(x,y)d
(
ν−µ

)
(x)d

(
ν−µ

)
(y)

=
∫
Ω

∫
Ω

∫
Ω

k(x,z)k(z,y)dµ(z)d
(
ν−µ

)
(x)d

(
ν−µ

)
(y) (5.38)

=
∫
Ω

∣∣∣∣∫
Ω

k(x,z)d
(
ν−µ

)
(x)
∣∣∣∣2 dµ(z) = D2

L2,k,µ(ν).

Remark: Observe that, for k ∈ L2(Ω×Ω,µ× µ), it is not technically obvious that the

definition of D2
L2,k,µ(ν) in (5.34) is properly justified: we do not know a priori that k is

integrable with respect to ν , only with respect to µ . (This problem does not occur in the

discrete case since we know that k(·,zi) ∈ L2(Ω,µ) for each i = 1, ...,N.) However, the

proof of Stolarsky principle (5.36) demonstrates that the L2 discrepancy D2
L2,k,µ is well-

defined for any Borel measure ν . Indeed, the inner integral with respect to dµ(z) in (5.38)

is defined according to part (5) of Theorem 3.3.2, and, moreover, produces the function

K(x,y), which is continuous and therefore integrable with respect to the finite Borel mea-

sure (ν−µ)× (ν−µ) on Ω×Ω. Hence Fubini’s theorem applies and

∫
Ω

∫
Ω

k(x,z)k(y,z)d
(
ν−µ

)
(x)d

(
ν−µ

)
(y) =

∣∣∣∣∫
Ω

k(x,z)d
(
ν−µ

)
(x)
∣∣∣∣2

is finite for µ-a.e. z and is integrable with respect to dµ(z), i.e. D2
L2,k,µ(ν) is well-defined.
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Chapter 6

P-frame Energy

We now turn our attention to a specific family of energies: the p-frame energies, given by

kernels of the form

Fp(〈x,y〉) := |〈x,y〉|p p > 0 (6.1)

on Sd−1
F , for F=R,C,H. Of course, since this energy does not depend on unitary transfor-

mations, the analysis of such energies naturally lends itself to the projective spaces FPd−1,

where the p-frame energies correspond to taking kernels of the form (using the notation

from Section 2.4, e.g. τ(x,y) = cos(ϑ(x,y)))

F∗p (τ(x,y)) =
(1+ τ(x,y)

2

) p
2
, (6.2)

as, for any w,z ∈ Sd−1
F , we have

F∗p (τ(wF,zF)) = F∗p (2|〈w,z〉|2−1) = |〈w,z〉|p.

For F=R or C, the p-frame energies have a rich history. The case of p = 2 and F=R

was studied in [Sid74] and later again in [BF03], In the latter paper, it was proved that the

minimizers of the discrete energy are precisely the finite unit norm tight frames (FUNTFs),

resulting in a recent increase in interest of this energy. We will discuss this in greater detail
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in Section 6.1.

In the case p = 4, the p-frame energy is closely connected to the maximal equiangu-

lar tight frames, which in the complex case are tight projective 2-designs, which are best

known by their alternative name symmetric informationally complete positive operator-

valued measures (SIC-POVMs). These are unit norm tight frames {z j}N
j=1 with the prop-

erty that |〈zi,z j〉|2 = 1
d+2 or 1

d+1 for i 6= j, in the real and complex case respectively. In

Cd , Zauner’s conjecture [Zau11] states that SIC-POVMs exist in all dimensions d ≥ 2,

which is supported by extensive numerical evidence [SG10, RBKSC04]. In the real case,

the existence of analogous objects (i.e. tight projective 2-designs) is also mysterious: they

may exist only in dimensions d = (2m−1)2−2 [BD79, BD80, DGS77, LS73], but do not

exist for infinitely many values of m [BMV04, Mak02]. When these objects do exist, they

minimize the 4-frame energy.

More generally, for even integers p, these energies were considered in [Sid74, Wel74,

Ven01], and it is known that for F = R or C projective k-designs minimize the p = 2k

energy. In this terminology, FUNTFs are equivalent to projective 1-designs, while spherical

2-designs are exactly the FUNTFs with center of mass at the origin. Spherical 2-designs

were constructively shown to exist for d≥ 2 precisely when the number of points N satisfies

N ≥ d +1 and N 6= d +2 when d is odd [Mim90], whereas FUNTFs of cardinality N exist

for all N ≥ d [BF03]. Surface measure is also known to be a minimizer for p ∈ 2N: this

can be seen either from the definition of k-designs, or from the fact that the function F∗p is

positive definite in this case, and was originally proved in the real case in [Sid74].

Conversely, when p 6∈ 2N, the situation is much less studied. The problem of minimiz-

ing general p-frame energies on Sd−1
R was first posed by Ehler and Okoudjou in [EO12],

where they also provided some initial results on both the discrete and continuous energies,

in particular showing that distributing mass equally on the vertices of the cross-polytope

yields the unique symmetric minimizer of the continuous p-frame energy for p ∈ (0,2)

, up to orthogonal transformations. There have since been developments in determin-
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ing minimizers of the discrete energy [CGG+20, GP20, XX21] and continuous energy

[BGM+a, BGM+b], the latter of which will be the main focus of this chapter.

In addition to the connections and applications in other areas of mathematics, the p-

frame energy is an interesting subject to study from a Potential Theoretical point of view. In

the introduction of Chapter 4, we discussed how, in the Euclidean setting, the discreteness

of minimizers follows from the potential W being mildly repulsive, i.e. that the potential,

as a function of r = ||x− y||, behaves as W (0)−Crγ for small r, with γ > 2 and C some

positive constant. Since, on the sphere Sd−1,

|〈x,y〉||p =
(

1− ||x− y||2

2

)p
=

∞

∑
m=0

(
p
m

)
(−r2)m

2m ≈ 1− pr2

2
,

the p-frame potential corresponds to the to the endpoint case γ = 2 and thus is quite delicate.

Indeed, we know for some values of p, there exist non-discrete minimizers, while for others

all minimizers are discrete, as we will show in Section 6.2. On the sphere, for p 6∈ 2N,

the p-frame potentials also have Gegenbauer expansions with infinitely many positive and

negative coefficients (see 6.7), so they fall outside the scope of Theorem 4.1.3. This means

that there is no guarantee that discrete minimizers exist, though we conjecture that all

minimizers are discrete in these cases (see Conjecture 6.2.5). Thus, characterizing the

behavior of minimizers of the p-frame energy may provide some insights on minimizing

energies with similar behaviors, something that the current theory is not equipped to handle.

We discuss the 2-frame energy, or simply “frame energy”, in Section 6.1 and the more

general p-frame energy in Section 6.2, in particular applying the results of Section 4.3 to

show that in certain circumstances, tight designs are minimizers of the p-frame energy, and

conjecture that for p 6∈ 2N, all minimizers of IF∗p are discrete. In Section 6.3, we show

that the 600-cell is minimizer of certain p-frame energies as well, though it is not a tight

design. While the discreteness of minimizers claimed in Conjecture 6.2.5 remains out of

reach, we establish that the support of measures minimizing the p-frame energy IFp , with
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p 6∈ 2N, on the real sphere must have empty interior in Section 6.4. Section 6.5 extends

some of our results to the non-compact setting. In Section 6.6, we show a connection to

Convex Geometry, applying our results to the problem of minimizing mixed volumes of

convex bodies.

6.1 Frame Energy

For F = R, the 2-frame energy, or simply frame energy, with the potential F2(t) = t2, was

studied in [Sid74] and later again in [BF03]. In the latter paper, which coined the name

for this energy, Benedetto and Fickus studied the discrete frame energy EF2 in order to

characterize all finite unit norm tight frames.

Given a finite dimensional Hilbert space H, a sequence {z j}N
j=1 in H is called a frame

for H if there exist constants 0 < A≤ B < ∞ such that for all y ∈ H

A||y||2H ≤
N

∑
j=1
|〈y,z j〉|2 ≤ B||y||2H . (6.3)

A frame is tight if A = B in (6.3), and a tight frame is called a unit norm tight frame if

||z j||H = 1 for 1 ≤ j ≤ N. While it is possible to define frames for infinite-dimensional

Hilbert spaces as well, in which case the frames may be infinite sequences, if one focuses

on finite dimensional spaces, then it makes sense to only consider frames that are finite

sequences, thus the term finite unit norm tight frames (FUNTFs).

Frames play an important role in signal processing and other branches of applied math-

ematics, as they act as overcomplete (or redundant) spanning sets of vectors that provide

stable signal representations and allow modeling for noisy environments [BL98, BT93].

They were introduced in 1952 by Duffin and Schaeffer [DS52] as part of an on-going

development of non-harmonic Fourier series, and have since been the subject of much re-

search (see, e.g., [BCHL03, DGM86, SH03]). FUNTFs are of particular interest, as their

characterization means that they provide an analogue of Parseval’s Identity: If {z j}N
j=1 is a
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FUNTF, then there exists some A > 0 such that

y =
1
A

N

∑
j=1
〈y,z j〉z j ∀y ∈ H. (6.4)

This property has led to various applications (see, e.g.,[CK03, Tyl87]), and connects

FUNTFs to problems such as the Kadison-Singer conjecture [CFTW06]. For a more com-

plete exposition on Frame Theory, see [Chr03].

In [BF03], Benedetto and Fickus provided a means of characterizing FUNTFs that

connected them to energy minimization:

Theorem 6.1.1. Let N ∈ N and ωN = {z1, ...,zN} ⊂ Sd−1. Then

1. Treating EF2(ωN) as a function of z1, ...,zN , every local minimizer of the frame energy

is a global minimizer.

2. If N ≤ d, then

EF2(S
d−1,N) =

1
N

and the minimizers are exactly the orthonormal sequences in Rd .

3. If N ≥ d, then

EF2(S
d−1,N) =

1
d

(6.5)

and the minimizers are exactly the N-element FUNFT’s.

We now provide a few remarks about this theorem. The first is that it shows that for all

N ≥ d, a FUNTF, or a spherical {2}-design as defined in Section 4.2, of N points exists.

Though less wide in scope than Theorem 2.6.1, this result has the advantage of giving

an explicit value after which such objects exist, rather than just the order. In addition,

part (1) is an interesting and unusual result. As discussed in Section 3.3 we know that

whenever F is conditionally positive definite on Sd−1, all local minimizers of IF are in fact

global minimizers. Such a result rarely holds in the discrete setting, where the definition of
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local minimizer is necessarily quite different, and is one aspect that makes discrete energy

optimization so difficult.

Since the minimum in (6.5) is independent of N, the weak∗-density of discrete prob-

ability measures shows that the result of Benedetto and Fickus also implies (6.6), below.

Moreover, inequality (6.6) for arbitrary measures µ ∈ P(Sd−1) was stated in [Sid74,EO12],

and Ehler and Okoudjou also characterized all minimizers of the continuous frame energy,

IF2 , as probabilistic tight frames. The author and coauthor provided a new proof of these

results in [BM19], as well as an alternate characterization the minimizers of IF2 (Lemma

6.1.3), which uses the following definition.

Definition 6.1.2. A probability measure µ ∈P(Sd−1 is called isotropic if its second moment

matrix is a multiple of the identity, i.e.

 ∫
Sd−1

xix j dµ(x)

d

i, j=1

= cId , with xi = 〈x,e j〉 for

1≤ j ≤ d and {e1, ...,ed} and orthonormal basis of Rd .

Lemma 6.1.3. For any µ ∈ P(Sd−1), we have

IF2(µ)≥
1
d
. (6.6)

Equality is achieved precisely for isotropic measures.

Proof. We expand the square, throw away off-diagonal terms, and apply the Cauchy–

Schwartz inequality:

IF2(µ) =
∫

Sd−1

∫
Sd−1

(〈x,y〉)2 dµ(x)dµ(y) =
d

∑
i, j=1

 ∫
Sd−1

xix j dµ(x)

2

≥
d

∑
i=1

 ∫
Sd−1

x2
i dµ(x)

2

≥ 1
d

 d

∑
i=1

∫
Sd−1

x2
i dµ(x)

2

=
1
d
.

From this, the characterization of the minimizers follows immediately.
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6.2 P-frame Energy

When p = 2k and Φ = FPd−1 (F = R,C, or H), we have that F∗2k(t) = 2−k · (1+ t)k is a

polynomial. It is standard to check that this polynomial is positive definite on Ω: this could

be done by checking that the coefficients in its Jacobi expansion are non-negative, but it

would be perhaps simpler to prove it as follows. Observe that, since C(α,β )
0 (t) = 1 and

C(α,β )
1 (t) = α−β

2(α+1) +
α+β+2
2(α+1) · t, we have that

1+ t =
2(α +1)

(α +β +2)
C(α,β )

1 (t) +
2(β +1)
α +β +2

C(α,β )
0 (t).

Since α+1= d−1
2 ·dimR(F)> 0 and β +1= 1

2 ·dimR(F)> 0, we see that the function 1+t

is positive definite on Ω. It easily follows from repeated application of Schur’s Theorem

that F∗2k(t) = 2−k · (1+ t)k is positive definite on Φ, and therefore IF∗2k
is minimized by the

surface measure η . This also means that on the sphere Sd−1
F , F2k is positive definite and

minimized by the normalized uniform surface measure on Sd−1
F , which we denote σF .

The minimal values of the p = 2k energy, in either the spherical or projective setting,

may be expressed in elementary functions for each F. The values for the real case were

given by Sidel’nikov in [Sid74] and all values were determined by Shatalov in [Sha01].

Proposition 6.2.1. Let k ∈ N. Then

IF2k(S
d−1
R ) = IF∗2k

(RPd−1) =
1 ·3 ·5 . . .(2k−1)

d · (d +2) . . .(d +2(k−1))
,

IF2k(S
d−1
C ) = IF∗2k

(CPd−1) = 1/
(

d + k−1
k

)
,

IF2k(S
d−1
H ) = IF∗2k

(HPd−1) = (k+1)/
(

2d + k−1
k

)
.

When p is not an even integer, the p-frame energies are not positive definite. While

this could be checked by showing that the Jacobi expansion of F∗p has negative coefficients

in each setting, we may show this without these computations. The kernel F∗p is clearly
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positive definite on FPd−1 if and only if Fp is positive definite on Sd−1
F . Since Sd−1

H and

Sd−1
C each contain a copy of Sd−1

R , it is enough to show that Fp is not positive definite on

the real sphere, which follows from its Gegenbauer expansion. Since it is an even function,

all of Fp’s odd coefficients are zero, so we need only calculate the even ones.

Lemma 6.2.2. Let k ∈ N, p ∈ (0,∞) and λ = d−2
2 . Then

F̂p(2k,λ ) =
Γ(λ +1)Γ( p+1

2 )
√

π Γ(k+ p
2 +λ +1)

k−1

∏
l=0

( p
2
− j
)
. (6.7)

In particular, the signs of the even coefficients alternate in sign for k sufficiently large.

Proof. Let us define, for all n ∈ N0, p > 0 and λ > −1
2

G(n,λ , p) =
1∫

0

t pCλ
n (t)(1− t2)λ− 1

2 dt. (6.8)

From (2.26) and the fact that Fp is even, we see that

F̂p(2k,λ ) =
Γ(λ +1)G(2k,λ , p)
√

πΓ(λ + 1
2)C

λ
2k(1)

. (6.9)

We claim that for all k ∈ N0,

G(2k,λ , p) =
2k−1Γ(λ + k+ 1

2)Γ(
p+1

2 )

(2k)!Γ(k+ p
2 +λ +1)

(
k−1

∏
l=0

(λ + l)

)(
k−1

∏
j=0

(p−2 j)

)
(6.10)

and

G(2k+1,λ , p) =
2kΓ(λ + k+ 1

2)Γ(
p
2 +1)

(2k+1)!Γ(k+ p
2 +λ + 3

2)

(
k

∏
l=0

(λ + l)

)(
k−1

∏
j=0

(p−2 j−1)

)
. (6.11)

A quick computation shows that these hold for k = 0.
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Now assume that (6.10) and (6.11) hold for some k ≥ 0. Using the recurrence relation

Cλ
n (t) =

2(n+λ −1)
n

tCλ
n−1(t)−

n+2λ −2
n

Cλ
n−2(t) (6.12)

for n≥ 2, we find that

G(2k+2,λ , p) =
2(2k+λ +1)

2k+2
G(2k+1,λ , p+1)− 2k+2λ

2k+2
G(2k,λ , p)

=
1

2k+2

[
2k−1Γ(λ + k+ 1

2)Γ(
p+1

2 )

(2k+1)!Γ(k+ p
2 +λ +2)

( k−1

∏
l=0

(λ + l)
)( k−1

∏
j=0

(p−2 j)
)]

×
[
4(2k+λ +1)(

p+1
2

)(λ + k)− (2k+1)(2k+2λ )(k+
p
2
+λ +1)

]
=

[
2k−1Γ(λ + k+ 1

2)Γ(
p+1

2 )

(2k+2)!Γ(k+ p
2 +λ +2)

( k−1

∏
l=0

(λ + l)
)( k−1

∏
j=0

(p−2 j)
)]

×
[
2(λ + k+

1
2
)(λ + k)(p−2k)

]
=

2kΓ(λ + k+ 3
2)Γ(

p+1
2 )

(2k+2)!Γ(k+ p
2 +λ +2)

(
k

∏
l=0

(λ + l)

)(
k

∏
j=0

(p−2 j)

)

and so

G(2k+3,λ , p) =
2(2k+λ +2)

2k+3
G(2k+2,λ , p+1)− 2k+2λ +1

2k+3
G(2k+1,λ , p)

=
1

2k+3

[
2kΓ(λ + k+ 1

2)Γ(
p
2 +1)

(2k+2)!Γ(k+ p
2 +λ + 5

2)

( k

∏
l=0

(λ + l)
)( k−1

∏
j=0

(p−2 j−1)
)]

× (2k+2λ +1)
[
(2k+λ +2)(p+1)− (2k+2)(k+

p
2
+λ +

3
2
)
]

=

[
2kΓ(λ + k+ 1

2)Γ(
p
2 +1)

(2k+3)!Γ(k+ p
2 +λ + 5

2)

( k

∏
l=0

(λ + l)
)( k−1

∏
j=0

(p−2 j−1)
)]

×2(k+λ +
1
2
)(k+λ +1)(p−2k−1)

=
2k+1Γ(λ + k+ 3

2)Γ(
p
2 +1)

(2k+3)!Γ(k+ p
2 +λ + 5

2)

(
k+1

∏
l=0

(λ + l)

)(
k

∏
j=0

(p−2 j−1)

)
.

Thus, inductively, we have that (6.10) and (6.11) hold for all k ∈N0. From (6.9) and (6.10),

we can now compute F̂p(2k,λ ), giving us our claim.
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Thus, the p-frame energy is not positive definite when p is not even, so the uniform

measure is not a minimizer. Moreover, by applying our linear programming results, we

find that in certain instances, only discrete minimizers exist.

Theorem 6.2.3. With Fp(t) = |t|p for t ∈ [−1,1], we have the following.

1. Suppose there exists a tight spherical (2t +1)-design C ⊂ Sd−1, then the measure

µC =
1
|C | ∑

x∈C
δx

is a minimizer of the p-frame energy IFp with 2t−2≤ p≤ 2t over µ ∈ P(Sd−1).

2. Let F= R, C or H. Assume that there exists a tight projective t-design C̃ ⊂ FPd−1,

and let the code C ⊂ Sd−1
F consist of the representers of C̃ in Sd−1

F according to

(2.16). Then the measure

µC =
1
|C | ∑

x∈C
δx

is a minimizer of the p-frame energy IFp with 2t − 2 ≤ p ≤ 2t over µ ∈ P(Sd−1
F ).

Furthermore, if the inequalities are strict, then µ ∈ P(Sd−1
F ) is a minimizer of IFp

only if the push-forward of µ , (pF)∗µ is a tight projective t-design.

3. If p 6∈ 2N, then the minimizers of IFp on the circle S1 are discrete.

Proof. We observe that part (3) is a special case of part (1), as on the circle S1, there exists

a tight (2t + 1)-design for all t ∈ N0: the vertices of a regular (2t + 2)-gon. In addition,

part (1) is itself essentially contained in part (2) with F = R: indeed, odd-strength tight

spherical designs are necessarily symmetric, and by taking one point in each antipodal pair

one obtains a tight projective design, as discussed in Section 2.6. Since tight projective

t-designs on RP1 exist for all t ∈ N (i.e. t + 1 equally spaced points on RP1), part 2 fully

characterizes the minimizers of the p-frame energy. Thus, it is enough to prove part 2,

which follows from Theorem 4.3.1 and the fact that F∗p (t) = (1+t
2 )

p
2 is strictly absolutely

142



monotonic of degree dp/2e and has as its first nonpositive derivative (F∗p )
(dp/2e+1)(t),−1<

t < 1. If p is not an even integer then this derivative is in fact negative, so Theorem 4.3.12

applies, finishing the proof.

Minimizing the continuous energy over all probability measures and obtaining discrete

minimizers allows us to make new conclusions about the minimizing configurations of the

discrete p-frame energies for certain values of the cardinality N. One directly obtains the

following corollary:

Corollary 6.2.4. Let F, d, p, and C = {x1, ...,xN} be as in any of the parts of Theorem

6.2.3. Let k ∈ N and ωkN = {z1, ...,zkN} ⊂ Sd−1
F such that for 0 ≤ j ≤ k− 1 and 1 ≤

m ≤ N, zkN+m = xm. Then N-point discrete p-frame energy is minimized by ωkN , i.e. the

configuration C repeated k times. In other words

EFp(ωkN) = EFp(S
d−1
F ,N). (6.13)

Thus, for example, if N is a multiple of 6, then repeated copies of a “half” of the icosahe-

dron minimize the N-point p-frame energy on S2 for p ∈ [2,4].

Extensive numerical experiments, the results of which were compiled and discussed in

[BGM+b], together with Theorem 6.2.3, the fact that the p-frame energy is almost mildly

repulsive, and the lack of positive definiteness leads us to the following conjecture:

Conjecture 6.2.5 ([BGM+b]). For all d ≥ 2 and p > 0 such that p 6∈ 2N, the minimizing

measures of IF∗p on FPd−1 are discrete.

While we have yet to prove this conjecture, in Section 6.4, we show that on Sd−1,

whenever p is not even, the support of any minimizer of the p-frame energy IFp necessarily

has empty interior.
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6.3 Optimality of the 600-cell

In addition to tight designs, the vertices of the 600-cell also provide a minimizer for certain

p-frame energies, specifically those on S3 for 8 < p < 10. The 600-cell is one of the six

4-dimensional convex regular polytopes; it has 600 tetrahedral faces, which explains the

origin of its name. When its 120 vertices are identified with unit quaternions, they give a

representation of the elements of a group known as the binary icosahedral group [Sti01].

As discussed above, optimization of p-frame energy IFp on the sphere S3 is equivalent

to optimization of the expression

IF∗p (µ) =
∫

RP3

∫
RP3

F∗p (τ(x,y))dµ(x)dµ(u)

over probability measures µ on RP3, where the kernel F∗p is given by

F∗p (t) =
(

1+ t
2

) p
2

.

We therefore assume for the rest of this section the underlying space to be RP3, and use

the corresponding normalized Jacobi polynomials C(−1/2,1/2)
n (t). Following the approach

in Section 4.3, we will establish a sequence of inequalities similar to (4.13).

The 600-cell is only a projective 5-design and therefore not tight. The authors in

[CK07], motivated by an approach found in the paper [And99], found means to prove

universal optimality of the 600-cell by using a higher degree interpolating polynomial. The

600-cell has the notable property that the averages of the 7th, 8th, and 9th degree Jacobi

polynomials vanish over it, although this is not the case for 6th degree Jacobi polynomial.

This allows for constructing a degree 8 polynomial h which is less than or equal to F∗p ,

positive definite, and agrees with F∗p at the distances appearing in the 600-cell, and which

finally has the property that its 6th Jacobi coefficient vanishes.
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For a polynomial h of the form,

h =
8

∑
n=0
n 6=6

ĥnC(1/2,−1/2)
n (t), (6.14)

the coefficients ĥn can be uniquely determined as functions of p by setting

h(ti) = f (ti), 1≤ i≤ 5

h′(ti) = f ′(ti), 2≤ i≤ 4,

where−1 = t1 < t2 < .. . < t5 = 1 are the elements of A (C ), for C the projective 600-cell.

It turns out that for all p ∈ [8,10], the coefficients ĥn(p) are nonnegative when 0 ≤ n ≤ 8,

n 6= 6. This was shown through a computer-assisted approach carried out by Glazyrin, Park,

and Vlasiuk; specifically, using interval arithmetic, we compute values of ĥn(p) on a grid

fine enough to guarantee that ĥn(p)≥ 0. The details of these computations are available in

the auxiliary files of the arXiv submission [BGM+b].

Lemma 6.3.1. If p ∈ [8,10] and the polynomial h is constructed as above, the coefficients

ĥn in the Jacobi expansion (6.14) satisfy ĥn(p)≥ 0.

Using this fact we show optimality of the 600-cell on the range p ∈ [8,10].

Theorem 6.3.2. For p ∈ [8,10], the 600-cell minimizes the p-frame energy IF∗p over Borel

probability measures on RP3.

Note that this also means that the 600-cell is a minimizer of IFp on the sphere S3.

Proof. Let F∗p (t) =
( t+1

2

)p/2
for some 8 < p < 10, t1 = −1, t2 = −

√
5−1
4 , t3 = −1

2 , t4 =
√

5−1
4 , and t5 = 1. Let h(t) be the 8th degree polynomial given by (6.14), such that h(ti) =

p(ti) for 1 ≤ i ≤ 5, and h′(ti) = p′(ti) for 2 ≤ i ≤ 4. By Lemma 6.3.1, the coefficients ĥn

are non-negative for p ∈ [8,10].
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Let g(t) = (t2− 1)∏
4
i=2(t− ti)2 and h̃(t) = H[F∗p (t),g](t). Then we also have h̃(t) =

H[h,g](t). By Lemma 4.3.6, this gives that for all t ∈ [−1,1] there exist some ξ ,s ∈

(min(t, t1),max(t, t5)) such that

F∗p (t)(t)− h̃(t) =
(F∗p )

(8)(ξ )

8!
g(t)≥ 0,

and

h(t)− h̃(t) =
h(8)(ν)

8!
g(t)≤ 0.

We thus have F∗p (t)(t)− h(t) = F∗p (t)(t)− h̃(t) + h̃(t)− h(t) ≥ 0. Since h(t) is positive

definite and ĥ6 = 0, for the 600-cell C , we have the following sequence of inequalities

IF∗p (t)(µ)≥ Ih(µ)≥ Ih(σ) = Ih(µC ) = IF(µC ),

implying that equally weighted vertices of C minimize p-frame energy.

6.4 Empty Interior of p-frame Energy Minimizers

Outside of some specific cases covered by Theorem 6.2.3, Conjecture 6.2.5, which states

that the minimizers of the p-frame energy with p 6∈ 2N on the real sphere (and on projective

spaces) are necessarily discrete, remains open. In the present section, we prove a weaker

statement for the real sphere: namely that the support of every minimizer of such energies

has empty interior.

Theorem 6.4.1. Let Fp(t) = |t|p, for p ∈ R+ \ 2N. Let µ be a minimizer of the p-frame

energy IFp . Then supp(µ) has empty interior.

While we proved a similar result in Theorem 4.2.1, it is clear that when p 6∈ 2N, the p-

frame potential (given on the sphere or on a projective space) is not analytic, meaning that

result does not apply. A similar result to Theorem 6.4.1 was proven in [FS13] for the Causal
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Variational Principle, given by the kernel (4.19), on S2. While our approach is inspired by

theirs and the main line of reasoning follows an analogous path, specific constructions and

arguments in the proofs of Propositions 6.4.2 and 6.4.3 below are much more peculiar and

significantly more involved in the case of the p-frame energy.

The proof of Theorem 6.4.1 is based on two properties of interior points of supp(µ).

The following statements hold:

Proposition 6.4.2. Let p ∈ R+ \ 2N, Fp(t) = |t|p, and µ be a minimizer of IFp . Then for

z ∈
(

supp(µ)
)◦,

supp(µ)∩ z⊥ = /0.

Proposition 6.4.3. Let the same conditions as in Proposition 6.4.2 hold. Then for z ∈(
supp(µ)

)◦,
supp(µ)∩ z⊥ 6= /0.

Since these two statements are clearly mutually exclusive whenever
(

supp(µ)
)◦ is non-

empty, their validity proves Theorem 6.4.1, i.e. that there are no interior points in the

support of a minimizer. The remainder of this section is dedicated to the proof of these

propositions.

We now sketch the argument for the first proposition. In short, the idea of the proof is

the following: Let z ∈
(

supp(µ)
)◦ and assume that there exists a point y ∈ supp(µ) such

that 〈y,z〉 = 0. We shall construct a finite set of points X =
{

xi
}N

i=1 ⊂ supp(µ), such that

the matrix
[
F(〈xi,x j〉)

]
i, j is not positive semidefinite, thus violating Lemma 3.1.11. The

set X will consist of the points z, y, and a number (depending on p) of points equidistantly

spaced around z on the great circle connecting y and z. We now make this precise.

Proof of Proposition 6.4.2. Fix z in the interior of supp(µ) and let y ∈ Sd−1 be any point

such that 〈y,z〉 = 0. Setting k ∈ N so that 2k− 2 < p < 2k, we shall construct a set

{x0, . . . ,xN−1} of N = 2k+2 points, all of which lie on the great circle connecting z and y.

The points x0, . . . ,x2k are chosen in such a way that the angle between x j and z is ( j− k)ε
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for some small ε > 0. Thus xk = z, and the points x0 and x2k make angles −kε and kε

with z, respectively. Observe that when ε is small enough, all of these points x0, . . . ,x2k

belong to supp(µ), since z is an interior point. Finally, we set x2k+1 = y. Then the angle

between x2k+1 = y and x j, j = 0, . . . ,2k, is π

2 − ( j− k)ε . In order to apply Lemma 3.1.11,

we consider the matrix A =
[
Fp(〈xi,x j〉)

]2k+1
i, j=0.

We will show that the matrix A is not positive semidefinite. To this end, we first con-

struct an auxiliary vector v ∈ R2k+1 \{0} such that for m ∈ {0,1, ...,2k−1},

2k

∑
j=0

jmv j = 0, (6.15)

i.e. this vector must be in the (right) kernel of the Vandermonde matrix



1 1 1 1 · · · 1

0 1 2 3 · · · 2k

0 1 22 32 · · · (2k)2

...
...

...
... . . . ...

0 1 22k−1 32k−1 · · · (2k)2k−1


.

We can take the entries of v to be

v j =
2k

∏
i=0
i6= j

1
j− i

=
(−1) j

(2k− j)! j!
. (6.16)

Such a vector can be seen to be in the kernel of the matrix above by use of the formula for

the inverse of the square Vandermonde matrix (see Ex. 40 on page 38 of [Knu97]).

Consider a vector u = [av0,av1, ...,av2k,b]T ∈ R2k+2, where a,b ∈ R. Then we have

〈Au,u〉= a2

(
2k

∑
i, j=0

viv jFp(〈xi,x j〉)

)
+2ab

(
2k

∑
j=0

v jFp(〈x2k+1,x j〉)

)
+b2. (6.17)

We shall show that the real numbers a and b can be chosen in such a way that the expression

148



above is negative, for ε sufficiently small.

Observe that for i, j = 0, . . . ,2k we have

Fp(〈xi,x j〉) = cosp ((i− j)ε
)
.

Since cosp(t) is even, smooth near zero, and cosp(0) = 1, we can use its Taylor expansion

to estimate the first term of (6.17) as follows

2k

∑
i, j=0

viv jFp(〈xi,x j〉) =
2k

∑
i, j=0

viv j cosp ((i− j)ε
)

=
2k

∑
i, j=0

viv j

(
1+

2k−1

∑
m=1

cmε
2m(i− j)2m +O(ε4k)

)

=

(
2k

∑
j=0

v j

)(
2k

∑
i=0

vi

)
+

2k−1

∑
m=1

cmε
2m

(
2k

∑
i, j=0

viv j(i− j)2m

)
+O(ε4k)

=
2k−1

∑
m=1

cmε
2m

2k

∑
i, j=0

viv j

2m

∑
l=0

(
2m
l

)
il j2m−l +O(ε4k)

=
2k−1

∑
m=1

cmε
2m

2m

∑
l=0

(
2m
l

)( 2k

∑
i=0

viil
)(

2k

∑
j=0

v j j2m−l

)
+O(ε4k)

= O(ε4k),

(6.18)

where we have used the fact that for all values of l = 0,1, . . . ,2m, either l ≤ 2k− 1 or

2m− l ≤ 2k−1.

We now turn to the second term of (6.17). Observe that for j = 0, . . . ,2k we have

Fp(〈x2k+1,x j〉) = Fp(〈y,x j〉) = cosp
(

π

2
− ( j− k)ε

)
=
∣∣sin

(
( j− k)ε

)∣∣p.
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We then find that

2k

∑
j=0

v jFp(〈y,x j〉) =
2k

∑
j=0

v j sinp (|k− j|ε) =
2k

∑
j=0

v j
(
|k− j|ε +O(ε3)

)p

=
2k

∑
j=0

v j (|k− j|ε)p (1+O(ε2)
)p

= ε
p

2k

∑
j=0

v j|k− j|p +O(ε p+2).

(6.19)

We now analyze the coefficient of ε p in the above expression using (6.16)

2k

∑
j=0

v j|k− j|p =
2k

∑
j=0

(−1) j |k− j|p

(2k− j)! j!
= 2

k−1

∑
j=0

(−1) j (k− j)p

(2k− j)! j!
. (6.20)

Since the right-hand side of (6.20) is a sum of k exponential functions of p, we know that

∑
k−1
j=0(−1) j (k− j)p

(2k− j)! j! has at most k−1 zeros, see e.g. Ex. 75 from [PS76, pg. 46]. We will

show that these zeros are exhausted by the even integer values p = 2,4, . . . ,2k−2. Indeed,

assume indirectly that

2
k−1

∑
j=0

(−1) j (k− j)p

(2k− j)! j!
= b 6= 0

for some even integer 0 < p≤ 2k−2. Then according to (6.17), (6.18), and (6.19) we have

〈Au,u〉= a2O(ε4k)+2ab
(
bε

p +O(ε p+2)
)
+b2.

Since p < 2k, for ε sufficiently small, the discriminant of this quadratic form is positive,

hence we can choose a and b so that 〈Au,u〉< 0. However, since Fp(t) = |t|p is a positive

definite function on Sd−1 for any even integer p, this is a contradiction, as the matrix A

must be positive semidefinite for any collection {xi}. Therefore

2
k−1

∑
j=0

(−1) j (k− j)p

(2k− j)! j!
= 0

for all p ∈ {2,4, ...,2k− 2}. Since there are at most k− 1 zeros of this function, we then
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know that

bp := 2
k−1

∑
j=0

(−1) j (k− j)p

(2k− j)! j!
6= 0

for all other values of p. Let p ∈ (0,2k)\{2,4, ...,2k−2}. Then

〈Au,u〉= a2O(ε4k)+2ab
(
bpε

p +O(ε p+2)
)
+b2,

and by the previous argument, for ε sufficiently small, we could choose a and b so that

〈Au,u〉< 0, i.e. A is not positive definite. Thus, according to Lemma 3.1.11, {x0, ...,x2k,y}

is not a subset of supp(µ). Since, by assumption, for small ε > 0 the points x0,x1, . . . ,x2k

all lie in a neighborhood of z and hence in supp(µ), this implies that y 6∈ supp(µ) and so

supp(µ)∩ z⊥ = /0.

We would like to make the following remark. Observe that for p 6∈ 2N, the number of points

used to disprove positive definiteness of Fp(t) = |t|p in the argument above is of the order p.

A restriction of this type is actually necessary. Indeed, according to the result of Fitzgerald

and Horn [FH77], for any positive definite matrix C =
[
ci j
]N

i, j=1 with non-negative entries

ci j ≥ 0, its Hadamard powers C(a) =
[
ca

i j
]N

i, j=1 are also positive definite when a ≥ N− 2.

Let G =
[
〈xi,x j〉

]N
i, j=1 be the Gram matrix of the set X = {x1, . . . ,xN} ⊂ Sd−1. Since the

matrix G(2) =
[
|〈xi,x j〉|2

]N
i, j=1 is positive definite and has non-negative entries, we have

that the matrix

G(p) =
[
|〈xi,x j〉|p

]N
i, j=1 =

(
G(2))(p/2)

is positive definite whenever p/2 ≥ N − 2. Therefore, to obtain a non-positive definite

matrix G(p), we must take N ≥ 2+ p/2 points.

We now prove Proposition 6.4.3, completing the proof of Theorem 6.4.1.

The proof of Proposition 6.4.3. Suppose a neighborhood of a point z ∈ Sd−1 is contained

in the support of µ . We shall demonstrate that supp(µ) must intersect the hyperplane z⊥.

Let us assume the contrary, i.e. supp(µ)∩ z⊥ = /0. We may move all the mass of µ to
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the hemisphere centered at z by defining a new measure µz ∈ P(Sd−1):

µz(E) =


µ(−E ∪E), if E ⊆ {x ∈ Sd−1 : 〈z,x〉> 0},

µ(E), if E ⊆ z⊥,

0, if E ⊆ {x ∈ Sd−1 : 〈z,x〉< 0}.

As our discussion in Section 2.4 about kernels that depend on |〈x,y〉| shows,

IFp(µ) = IFp(µU(R)) = IFp((µz)U(R)) = IFp(µz),

so that µz is also a minimizer.

Since supp(µ)∩ z⊥ = /0, we also have that supp(µz)∩ z⊥ = /0, i.e. supp(µz) ⊂ {x ∈

Sd−1 : 〈z,x〉> 0}. Compactness of the support of µz then implies that it is separated from

z⊥, i.e. for some δ > 0 we have 〈y,z〉 > δ for each y ∈ supp(µz). Let us choose an open

neighborhood Uz of z, small enough so that Uz ⊆ supp(µz) and so that for each x ∈Uz and

each y ∈ supp(µz), 〈y,x〉> δ > 0.

We can now write the potential of µz at the point x ∈Uz as

U µz
Fp
(x) =

∫
Sd−1

|〈x,y〉|p dµz(y) =
∫

supp(µz)

〈x,y〉p dµz(y). (6.21)

The discussion above implies that the last expression is well-defined for all p > 0. Accord-

ing to Theorem 3.1.7, the potential U µz
Fp
(x) is constant on Uz ⊆ supp(µz).

When p is an odd integer, the proof can be finished very quickly. Indeed, in this case

the expression

g(x) =
∫

supp(µz)

〈x,y〉p dµz(y)

is well-defined for each x ∈ Sd−1 and yields an analytic function on the sphere (actually,

a polynomial). Hence, being constant on an open set implies that it is constant on all of
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Sd−1, by Lemma 4.2.2, which is not possible since, obviously, g(−z)=−g(z)=−U µz
Fp
(z)=

−IFp(µz) 6= 0. Compare this argument to Theorem 4.2.1.

We now will present an approach which works for all p ∈ R+ \2N. Assume that there

exists a differential operator D acting on functions on the sphere with the following two

properties:

1. D locally annihilates constants, i.e. if u(x) is constant on some open set U , then

Dxu = 0 on U ;

2. Dx (〈x,y〉p)< 0 for all x ∈Uz and y ∈ supp(µz).

Existence of such an operator would finish the proof since we would then have for each

x ∈Uz

0 = DxU
µz
Fp
(x) =

∫
supp(µz)

Dx (〈x,y〉p) dµz(y)< 0, (6.22)

which is a contradiction. Note that that switching to Dx (〈x,y〉p)> 0 in condition (2) does

not affect the proof.

We now construct such an operator D. Let ∆ denote the Laplace–Beltrami operator

on Sd−1. Writing it in the standard spherical coordinates θ1, . . . ,θd one obtains (see, e.g.,

equation (2.2.4) in [KMR01])

∆ =
d−1

∑
j=1

1
q j(sinθ j)d−1− j

∂

∂θ j

(
(sinθ j)

d−1− j ∂

∂θ j

)
, (6.23)

where q1 = 1 and q j = (sinθ1 . . .sinθ j−1)
2 for j > 1.

For a fixed y ∈ Sd−1, choose the coordinates so that cosθ1 = 〈y,x〉. Then 〈y,x〉p =

cosp θ1, effectively leaving just one term in the formula above, and a direct computation

shows that

∆x (〈x,y〉p) = p(p−1)〈x,y〉p−2− p(p+d−1)〈x,y〉p. (6.24)

Observe that if p ∈ (0,1], then the operator ∆x satisfies conditions (1) and (2), hence com-
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pleting the proof for this range of p.

Now consider the operator D = ∆
(
∆+ p(p+d−1)

)
. It is easy to see that

Dx (〈x,y〉p) = p(p−1)∆x
(
〈x,y〉p−2)

= p(p−1)(p−2)〈x,y〉p−4 ·
(
(p−3)− (p+d−3)〈x,y〉2

)
.

(6.25)

If p∈ (2,3], then p−3≤ 0 and p+d−3> d−1≥ 0, so the expression above is strictly

negative. Hence this operator satisfies conditions (1) and (2) for 2 < p≤ 3.

Moreover, if p ∈ (1,2), the expression above is strictly positive. Indeed, the function

gp(t) = (p− 3)− (p+ d− 3)t is monotone on [0,1] with gp(0) = p− 3 < 0 and gp(1) =

−d < 0. Therefore, condition (2) holds with the inequality reversed, so the case 1 < p < 2

is also covered.

It is now clear how to iterate this process. Define the operator D(0) := ∆, D(1) = ∆
(
∆+

p(p+d−1)
)
, and, more generally, for k∈N, define the differential operator of order 2k+2

D(k) = ∆

(
∆+(p+d−2k+1)

2k−2

∏
j=0

(p− j)

)(
∆+(p+d−2k−1)

2k−4

∏
j=0

(p− j)

)

· · ·

(
∆+ p(p−1)(p−2)(p+d−3)

)(
∆+ p(p+d−1)

)
.

Let p∈R+\2N and choose k∈N0 so that 2k−1< p≤ 2k+1. An iterative computation

similar to (6.25) gives us

D(k)
x (〈x,y〉p) =

(
2k+1

∏
j=0

(p− j)

)
〈x,y〉p−2k−2−

(
2k

∏
j=0

(p− j)

)
(p+d−2k−1)〈x,y〉p−2k

=

(
2k

∏
j=0

(p− j)

)
〈x,y〉p−2k−2 ·

(
(p−2k−1)− (p+d−2k−1)〈x,y〉2

)
.

For p ∈ (2k,2k+1], the expression above is strictly negative, since p−2k−1≤ 0 and

p+d−2k−1 > d−1≥ 0.

At the same time, for p ∈ (2k− 1,2k), this expression is strictly positive, because
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∏
2k
j=0(p− j)< 0 and the monotone function gp(t) = (p−2k−1)− (p+d−2k−1)t takes

values gp(0) = p−2k−1 < 0 and gp(1) =−d < 0. Thus, operator D(k) allows us to prove

Proposition 6.4.3 for p in the range (2k−1,2k)∪ (2k,2k+1].

6.5 p-frame Energies in Non-compact Spaces

As discussed in Section 2.1, energy optimization on non-compact spaces is possible so

long as there is some constraint that forces minimizing measures to have bounded support.

This can be done by placing certain constraints on the kernel, as was discussed in the in-

troduction of Chapter 4. Another possibility is to place constraints on the set of probability

measures. Just as above, we consider F = R,C,H. In this setting, we consider the set of

probability measures µ ∈ P(Fd) with the additional restriction

∫
Fd

||x||2dµ(x) = 1, (6.26)

and denote this set by P∗(Fd). Note that µ({0}) = 0 for all µ ∈ P∗(Fd).

We have previously used linear programming to bound energies and determine mini-

mizers on compact, connected, two-point homogeneous spaces. This approach can be ex-

tended to p-frame energies in non-compact spaces as well. The normalization from (6.26)

allows us to obtain a direct extension of above results for the spherical case, and by scaling,

solutions to more general problems can be obtained from these results. A similar problem

of finding minimizers for p-frame energies for p≤ 2, subject to the condition that measures

be isotropic, was investigated in [Gla].

In what follows, we shall assume Fp : F→ [0,∞) is the p-frame potential F(〈x,y〉) =

|〈x,y〉|p on Fd , F∗p (t) =
(

t+1
2

)p
is the projective p-frame kernel on FPd−1×FPd−1

IFp(µ) =
∫
Fd

∫
Fd

Fp(τ(x,y))dµ(x)dµ(y).
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We shall also define qF : Fd \ {0} → FPd−1 to be the projection from Fd to FPd−1. From

the discussion in Section 2.4 about the relationships between energies on the spheres and

projective spaces, we can see that for all x,y ∈ Fd \{0},

Fp(〈x,y〉) = ||x||p||y||p
∣∣∣〈 x
||x||

,
y
||y||

〉∣∣∣p
= ||x||p||y||pF∗p

(
τ

(
pF
( x
||x||

)
, pF
( y
||y||

)))
= ||x||p||y||pF∗p

(
τ(qF(x),qF(x))

)
.

As above, the normalized Jacobi polynomials for the projective spaces FPd−1 are denoted

Cm.

Lemma 6.5.1. Let p≥ 2, and assume F∗p (t)≥ h(t) =
∞

∑
m=0

ĥmCm(t) for all t ∈ [−1,1], where

ĥm ≥ 0 for all m≥ 0. Then IFp(µ)≥ ĥ0 for all µ ∈ P∗(Fd).

Proof. Since discrete measures are weak∗ dense in P(Fd), it is sufficient to prove the in-

equality for them only. Let µ take the form µ = 1
N

N
∑

i=1
δxi , xi ∈ Fd . Then,

IFp(µ) =
1

N2

N

∑
i, j=1
||xi||p||x j||pF∗p (τ(qF(xi),qF(x j)))

≥ 1
N2

N

∑
i, j=1
||xi||p||x j||ph(τ(qF(xi),qF(x j)))

=
1

N2

∞

∑
m=0

ĥm

N

∑
i, j=1
||xi||p||x j||pCm(τ(qF(xi),qF(x j))).

For any m≥ 1, Cm is positive definite on FPd−1 so that each sum

N

∑
i, j=1
||xi||p||x j||pCm(τ(qF(xi),qF(x j)))
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is non-negative. Thus,

IFp(µ)≥ ĥ0
1

N2

N

∑
i, j=1
||xi||p||x j||pC0(τ(qF(xi),qF(x j))) = ĥ0

(
1
N

N

∑
i=1
||xi||p

)2

.

Since p≥ 2,

1
N

N

∑
i=1
||xi||p ≥

(
1
N

N

∑
i=1
||xi||2

) p
2

,

holds by Jensen’s inequality. The constraint (6.26) is equivalent to 1
N

N
∑

i=1
||xi||2 = 1, and so

combining all inequalities, we complete the proof of the lemma.

Lemma 6.5.1 gives that any linear programming bounds for p-frame energies for the

spherical/projective case will work in the non-compact setting as well. As a consequence

of this approach we obtain the following result.

Theorem 6.5.2. Let C be a set of arbitrary unit representatives of a tight projective M-

design, M ≥ 2, in FPd−1 and p ∈ [2M− 2,2M]. Alternatively, let C be a set of arbitrary

unit representatives of the projective 600-cell in RP3 and p ∈ [8,10]. Then

µC =
1
|C | ∑

x∈C
δx

is a minimizer of

IFp(µ) =
∫
Fd

∫
Fd

Fp(〈x,y〉)dµ(x)dµ(y)

over P∗(Fd).

Proof. Set h to be the interpolating polynomial H[F∗p ,g] used in the proof of Theorem 4.3.1

or the polynomial h from Theorem 6.3.2, depending on C . Let us define

hp(x,y) := ||x||p||y||ph(τ(qF(x),qF(y))), (6.27)

for x,y ∈ Fd \{0}.
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By construction, we see that for all µ ∈ P∗(Fd),

IFp(µ)≥ Ihp(µ)

with equality if µ = µC . From the proof of Lemma 6.5.1, it is also clear that

Ihp(µ)≥ ĥ0

with equality if µ(Sd−1
F ) = 1 and Ih((qF)∗µ) = ĥ0. Once again, this condition is satisfied if

µ = µC , since h is a positive definite polynomial and (qF)∗µC is a projective design of the

appropriate strength.

6.6 Mixed Volume Inequalities

In this section we demonstrate an intriguing connection between the p-frame energy and

convex geometry. We begin by briefly recalling some of the basic notions from convex

geometry. See [Kol05, Ch. 2] for a more thorough development.

Let K ⊂ Rd be a convex body and σK be the surface measure of K, that is, a measure

supported on the unit sphere Sd−1, satisfying

σK(B) = |{x ∈ ∂K : the outer unit normal to K at x belongs to B}|d−1

for all Borel sets B⊆ Sd−1, where | · |d−1 denotes the (d−1)-dimensional Hausdorff mea-

sure. For example, if K is a polytope with faces {Ki}m
i=1 and normals {ni}m

i=1, σK is atomic

with mass |Ki|d−1 at each ni,

σK =
m

∑
i=1
|Ki|d−1δni,

and if K = Bd is the d-dimensional unit ball, then σK simply coincides with the standard

(unnormalized) uniform surface area measure σK(B) = |B|d−1 = Ad−1σ(B) = 2πd/2

Γ(d/2)σ(B).
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Recall that for a convex body, K ⊂ Rd , the support function hK(u) of K takes the form

hK(u) = sup
v∈K
〈u,v〉,

and uniquely determines K.

Given two convex bodies K and L, and p≥ 1, define the Lp-mixed volume

Vp(K,L) =
p
d

lim
ε→0

|K +p εL|− |K|
ε

,

where K +p εL is the convex body with support function hK+pεL(u) satisfying

hK+pεL(u)p = hK(u)p + εhL(u)p.

Note that if L is the unit ball Bd and p = 1, the above quantity is just the definition of the

surface area of K. In general, Vp(K,L) is known as the Lp-mixed volume of K and L. The

following alternative integral representation for Vp(K,L) is known

Vp(K,L) =
1
d

∫
Sd−1

hL(u)pdσ
p
K(u),

where dσ
p
K(u) = hK(u)1−pdσK(u), so that in particular dσ1

K(u) = dσK(u) .

Now, let us call a probability measure µ ∈ P(Sd−1) admissible, if it is symmetric and

not concentrated on a proper subspace. A classical result, which follows from Minkowski’s

theorem, says that any admissible measure can be realized as the surface area measure of a

symmetric convex body; see more in [Sch93, Ch. 7].

The Lp-projection body ΠpK of a convex body K is defined to be the origin-symmetric

body whose support function is given by

hΠpK(u) =
(

cd,p

∫
Sd−1

|〈u,v〉|pdσ
p
K(u)

) 1
p
, (6.28)
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where cd,p is the normalization chosen so that for the unit ball Bd , ΠpBd =Bd (see [LYZ00,

LZ97]). Thus, the identities

IFp(σ
p
K) =

∫
Sd−1

∫
Sd−1

|〈u,v〉|dσ
p
K(u)dσ

p
K(v) =

∫
Sd−1

hΠpK(u)p dσ
p
K(u) = dVp(K,ΠK)

finally establish the connection between Lp-mixed volumes and p-frame energies.

Theorems 6.2.3 and 6.3.2 show that minimizers of IFp(µ) over probability measures are

admissible when a corresponding tight design (or the 600-cell) exists, as this measure is

symmetric and the support spans Rd . Therefore, minimizing the p-frame energy in these

cases is equivalent to minimizing the Lp mixed volume of a convex body K with its Lp-

projection body ΠpK over all convex bodies satisfying σ
p
K(Sd−1) = 1. In the case that the

design is supported on the vertices of a polyhedron C, the minimizing K will be the dual of

C, scaled so that σ
p
K is a probability measure. In particular, due to the fact that σ1

K = σK we

obtain the following:

Proposition 6.6.1. The minimum of the quantity

V1(K,Π1K)

|∂K|2

over all symmetric convex bodies in Rd is achieved when K is a cube.

Indeed, it is easy to see that, when K is a cube, the surface measure σK is equally

distributed on the vertices of a cross-polytope, which minimizes the p-frame energy for

p = 1.

In accordance with Conjecture 6.2.5, we also anticipate that whenever p is not an even

integer, the Lp-mixed volume Vp(K,ΠpK) is always minimized by a convex body which is

polyhedral (with discrete surface measure).
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Chapter 7

Acute Angle Energy

The famous Hungarian geometer László Fejes Tóth formulated a variety of problems and

conjectures about point distributions on the sphere, two of which, pertaining to the max-

imizers of the discrete Euclidean and geodesic Riesz energies, were discussed in Section

5.2. In this chapter, we discuss another conjecture of his that is currently open. In 1959,

Fejes Tóth posed the following question [FT59]: what is the maximal value of the sum of

pairwise acute angles defined by N vectors in the sphere S2? More precisely, setting the

kernel

ϕ(〈x,y〉) := arccos(|〈x,y〉|) = min
{

arccos(〈zi,z j〉),π− arccos(〈zi,z j〉)
}
, (7.1)

determine which N-element point sets ωN = {z1, . . . ,zN}⊂ S2 maximize the discrete energy

Eϕ .

He conjectured that this sum is maximized by the periodically repeated copies of the

standard orthonormal basis. Though he only stated this for d ≤ 3, the generalization is

clear, and has been independently stated in [Pet14] for all d ≥ 2.

Conjecture 7.0.1 (Fejes Tóth, 1959 [FT59]). Let d ≥ 2 and N = md + k with m ∈ N0

and 0 ≤ k ≤ d− 1. Then the discrete energy Eϕ on Sd−1 is maximized by the point set

ωN = {z1, . . . ,zN} ⊂ Sd−1 with zpd+i = ei, where {ei}d
i=1 is the standard orthonormal basis
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of Rd , i.e. ωN consists of m+1 copies of k elements of the orthonormal basis of Rd and m

copies of the remaining d− k basis elements. In this case,

Eϕ(ωN) =
π

2N2

(
k(k−1)(m+1)2 +2km(d− k)(m+1)+(d− k−1)(d− k)m2) . (7.2)

In particular, if N = md, the sum is maximized by m copies of the orthonormal basis:

max
ωN⊂Sd−1

Eϕ(ωN) =
π

2
· d−1

d
. (7.3)

Due to Lemma 2.1.1 and because (7.3) is independent of N, we may also formulate

a continuous version of the conjecture: that the continuous energy Iϕ is maximized by a

measure whose mass is equally distributed between elements of the standard orthonormal

basis, i.e.

µONB :=
1
d

d

∑
i=1

δei. (7.4)

Conjecture 7.0.2. The energy integral Iϕ is maximized by µONB:

max
µ∈P(Sd−1)

Iϕ(µ) = I
(
µONB

)
=

π

2
· d−1

d
. (7.5)

Since the maximal value in (7.3) is independent of N, Lemma 2.1.1 shows that the

case N = md of Conjecture 7.0.1 implies Conjecture 7.0.2, and the converse implication is

obvious.

The case d = 2 of Conjecture 7.0.1 has been settled in [FVZ16, Pet14]. We shall return

to this case in Section 7.2 and shall give several alternative proofs.

In dimension d = 3, Fejes Tóth confirmed Conjecture 7.0.1 for N ≤ 6 and established an

asymptotic upper bound Eϕ(ωN) ≤ 2π

5 for large N. In [FVZ16] Fodor, Vı́gh, and Zarnócz
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proved that for any point distribution ωN ⊂ S2

Eϕ(ωN)≤
3π

8
when N is even, (7.6)

with a small correction for N odd.

In their recent papers [LM21, LMb], Lim and McCann considered a different approach

to this problem, studying the kernel ϕ∗s (x,y) :=
(

2
π

arccos(|〈x,y〉|)
)−s

for s < 0 (the Riesz

s-energy for the normalized acute angle potential ϕ∗). Among other results, they showed

that there exists some sd ≤−1 such that for all s < sd , the set

PONB(Sd−1) : = {µ ∈ P(Sd−1) : µ({ei,−ei}) =
1
d
,

i ∈ {1, ...,d},{ei}d
i=1 an orthonormal basis of Rd}

(7.7)

characterizes the maximizers of Iϕ∗s up to rotation. The also found that at this endpoint sd ,

there must exist a maximizer which is not in PONB(Sd−1). In response to an earlier draft

of Lim and McCann’s work, the author and coauthors Bilyk, Glazyrin, Park, and Vlasiuk

provided a proof that sd >−2, improving a previously discovered bound. This result now

appears in the appendix of [LMb], but we provide it here as well.

Proposition 7.0.3. If s≤−2, then the the maximizers of

Iϕ∗s (µ) :=
∫

Sd−1

∫
Sd−1

( 2
π

arccos(|〈x,y〉|)
)−s

dµ(x)dµ(y) (7.8)

are precisely the elements of PONB(Sd−1).

Proof. For t ∈ [−1,1] and s < 0, let Fs(t) =
(

2
π

arccos(|t|)
)−s

and g(t) = 1− t2. We first

show that s ≤ −2 if and only if g(t) ≥ Fs(t) on [−1,1] and g(t) = Fs(t) exactly when

t ∈ {−1,0,1}.

Setting hs(t) := g(t)
1
−s − Fs(t)

1
−s , the computation h′′−2(t) = (2tπ−1− 1)(1− t2)−3/2

shows h−2(t) to be strictly concave on the interval [0,1] and to vanish at both endpoints.
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This establishes the above equivalence for s = −2. For s < −2, the same conclusion then

follows from dhs
ds (t)≤ 0. For s >−2 we have that

lim
t→1

F ′s (t) =−∞ < g′(t)

and Fs(1) = 0 = g(1), so domination of Fs by g fails. Thus we indeed have that s ≤ −2 if

and only if g(t)≥ Fs(t) on [−1,1] and g(t) = Fs(t) exactly when t ∈ {−1,0,1}.

We now use linear programming to complete the proof. Using the fact that g bounds Fs

from above, with equality on {−1,0,1}, and our knowledge of frame energy (see Lemma

6.1.3), we find that for all s≤−2 and µ ∈ P(Sd−1)

IFs(µ)≤ Ig(µ)≤ Ig(µONB) = IFs(µONB). (7.9)

The first inequality becomes an equality precisely when A (supp(µ))⊆ {−1,0,1} and the

second when µ is an isotropic measure. The two properties characterize PONB(Sd−1), and

our claim now follows.

Though Proposition 7.0.3 clearly does not prove Conjecture 7.0.2, it may be seen as

some further evidence to suggest the conjecture is correct: in [LM21], the Lim and McCann

showed that Conjecture 7.0.2 is true if and only if sd =−1.

The kernel

ϕ̃(t) :=
π

2
−ϕ(t) = arcsin(|t|)

(for which minimization of Iϕ̃ is naturally equivalent to the maximization of Iϕ ) has quite

a bit in common with the p-frame potentials discussed in Chapter 6. It is clearly even and

repulsive-attractive, with a minimum at t = 0, and for d ≥ 3, ϕ̃ is not positive definite on

the sphere Sd−1. This can be seen by the fact that on S2, σ is not a minimizer of the energy:

Iϕ̃(σ) =
π

2
−1 >

π

6
= Iϕ̃(µONB).
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Since spheres of higher dimensions contain a copy of S2 within them, ϕ̃ cannot be positive

definite on them either. However, ϕ̃ defers from the p-frame potentials in two interesting

ways. Unlike the p-frame potentials, ϕ̃ is positive definite on the circle S1, as will be

shown in Section 7.2. As we will discuss in that section, this suggests that there exists one-

dimensional (in the sense of Hausdorff dimension) minimizers of Iϕ̃ , rather than exclusively

discrete ones, as we suspect for the p-frame energy. The second is that limt→±1 ϕ̃ ′(t) = ∞,

which prevents us from creating a Hermite interpolant as we did in Section 4.3.

In Section 7.1, we prove a new upper bound for Iϕ in all dimensions, and show that

the validity of Conjecture 7.0.2 in some dimension d ≥ 3 implies its validity in all lower

dimensions. In Section 7.2, we provide several proofs of Conjectures 7.0.1 and 7.0.2 on S1:

two based on orthogonal expansions, and one based on a variant of the Stolarsky Invariance

Principle.

7.1 New Results in all Dimensions

New Bound

As discussed in Section 4.3, when a suitable candidate for an interpolant does not present

itself, we may find bounds on the energy Iϕ by determining an auxiliary polynomial h that

bounds ϕ from above and for which we know the maximizers. In the present section, we

prove a new upper bound for Iϕ in all dimensions d ≥ 3 through the use of a quadratic

auxiliary function. In addition to being the first result which determines a bound for all

dimension, this result also provides a stronger bound than (7.6) when restricted to S2.

Theorem 7.1.1. In all dimensions d ≥ 3

max
µ∈P(Sd−1)

Iϕ(µ)≤
π

2
− 69

50d
. (7.10)
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In particular, for d = 3,

max
µ∈P(S2)

Iϕ(µ)≤
π

2
− 69

150
= 1.110796... <

3π

8
= 1.178097... , (7.11)

thus improving upon (7.6).

We recall that, according to (7.3) and (7.5), the conjectured maximal value in dimension

d = 3 is π

3 = 1.047198... .

Proof. It suffices to demonstrate that the inequality

arccos |t| ≤ π

2
− 69

50
t2 (7.12)

holds for all t ∈ [−1,1], as then Lemma 6.1.3 would imply that, for all µ ∈ P(Sd−1),

Iϕ(µ)≤
π

2
− 69

50d
. (7.13)

For b≥ 1, π

2 −bt2−arccos(|t|) is an even function, increasing on
[

0,
√

b−
√

b2−1
2b

)
and(√

b+
√

b2−1
2b ,1

)
, and decreasing on

(√
b−
√

b2−1
2b ,

√
b+
√

b2−1
2b

)
. Thus, arccos |t| ≤ π

2 −bt2

for all t ∈ [−1,1] if and only if

π

2
− b+

√
b2−1
2

− arccos

√b+
√

b2−1
2b

≥ 0,

which holds for b≤ 69
50 , completing our proof. Figure 7.1 illustrates inequality (7.12).

Figure 7.1 indicates that there is very little room for improvement via this method (one

can check that π

2 −bt2 + arccos(|t|) takes negative values if b≥ 7
5 ), and therefore it cannot

yield Conjecture 7.0.2.
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Figure 7.1: An illustration of inequality (7.12): the graph of the function F(t) = π

2 −
69
50 t2−

arccos(|t|) for 0≤ t ≤ 1.

Dimension Reduction Argument

Here we show generally that if a measure’s components are orthogonal and that measure is

a maximizer of the energy integral of some function, then the components are maximizers

of this energy in lower dimensions. Naturally, the simplest case of this occurs when the

measure is an orthonormal basis.

Let F : [−1,1]→ R be a bounded, measurable function that achieves its maximum at

0. Let ν ∈ P(Sk) and λ ∈ P(Sl), with k+ l = d−2. Construct a measure µ ∈ P(Sd−1) as

follows:

µ = aν̃ +bλ̃ , (7.14)

where 0 ≤ a,b ≤ 1, a+b = 1, and ν̃ and λ̃ are copies of ν and λ , supported on mutually

orthogonal subspheres of Sd−1 of dimensions k and l, respectively. It is easy to see that

IF(µ) = a2IF(ν)+b2IF(λ )+2abF(0), (7.15)

which implies that if µ is a maximizer of IF over P(Sd−1), then ν and λ maximize IF

respectively over P(Sk) and P(Sl).

The orthonormal basis measure µONB is precisely of the form (7.14), with ν and λ as

orthonormal basis measures in lower dimensions. Therefore, in particular, we have just

proved that the validity of Conjecture 7.0.2 on Sd−1 for some dimension d ≥ 3 implies its

validity on Sk for k < d−1, i.e. in all lower dimensions.
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Moreover, in our case, for ϕ(t) = arccos(|t|), we have ϕ(0) = π

2 . Let l = 0 and k =

d−2. Then Iϕ(λ ) = ϕ(1) = 0, and thus (7.15) becomes

Iϕ(µ) = a2Iϕ(ν)+πa(1−a).

Optimizing this quadratic polynomial in a we find that for a =
π

2
(
π− Iϕ(ν)

) ,

Iϕ(ν) = π− π2

4Iϕ(µ)
.

This discussion leads to the following conclusion.

Proposition 7.1.2 (Dimension reduction). Denote Md−1 = max{Iϕ(µ) : µ ∈ P(Sd−1)}. We

have the following:

1. For d ≥ 3,

Md−2 ≤ π− π2

4Md−1
.

2. Assume that Conjecture 7.0.2 holds on Sd−1, i.e. Md−1 =
π(d−1)

2d . Then it also holds

on Sd−2, and consequently in all lower dimensions.

Observe, that part (2) follows both from part (1), and, in a more general setting, from

the discussion in the beginning of this section. We also see that Proposition 7.1.2 implies

that, in order to prove Conjecture 7.0.2 in all dimensions d ≥ 3, it is enough to establish its

validity for infinitely many values of d.

7.2 The Case of S1 Revisited

We now revisit the case d = 2, in which Conjecture 7.0.2 (and hence also Conjecture 7.0.1)

has been settled in [FVZ16, Jia08] through a geometric proof. We shall provide three ana-

lytic approaches to this case (one based on a Chebyshev expansion, one based on a Fourier
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expansion, and one based on connections to discrepancy theory), which first appeared in

[BM19].

Before we proceed, we observe that on S1

Iϕ(µONB) = Iϕ(σ) = Iϕ(σ4N) =
π

4
, (7.16)

where σN is the measure with mass equally concentrated at N equally spaced points, i.e.

with xN,k =

cos(2πk/N)

sin(2πk/N)

,

σN =
1
N

N

∑
k=1

δxN,k .

Hence, to prove Conjecture 7.0.2 it suffices to prove that any of these measures is a maxi-

mizer.

It is worth noting the implications of the uniform measure σ being a minimizer for Iϕ̃

(maximizer for Iϕ ) on S1. If the Conjecture 7.0.2 is true, then µ = 1
4 ∑

4
j=1 δe j is a minimizer

of Iϕ̃ on S3. Following the dimension-reduction discussion above, the normalized uniform

1-dimensional Hausdorff measure on two orthogonal copies of S1, i.e. on the set

{(x1,x2,0,0) : x2
1 + x2

2 = 1}∪{(0,0,x3,x4) : x2
3 + x2

4 = 1},

would also yield a minimizer. This naturally generalizes to higher dimensions. Thus,

assuming the validity of the conjecture, this energy has non-discrete minimizers.

Chebyshev Polynomial Expansion

From Proposition 3.5.2, we know that σ is a maximizer of the energy integral IF on S1

if and only if F is a negative definite function on S1 (up to the constant term), which is

equivalent to the fact that in the orthogonal expansion of F into Chebyshev polynomials,
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F(t)∼
∞

∑
n=0

F̂(n,0)Tn(t), the coefficients of all non-constant terms are non-positive, i.e.

F̂(n,0)≤ 0 for n≥ 1.

Since the Chebyshev coefficients of ϕ(t) = arccos |t|,

ϕ̂(n,0) =
1
π

1∫
−1

F(t)Tn(t)(1− t2)−
1
2 dt =



π

4 , if n = 0,

−4
πn2 , if n≡ 2 mod 4,

0, otherwise

(7.17)

σ clearly maximizes Iϕ on S1, which together with (7.16) implies Conjecture 7.0.2.

Fourier Series

Our second orthogonal expansion is a Fourier series. Every point in S1 can be defined by

its angle, so setting T = R/(2πZ) and defining, for every µ ∈M (S1), a corresponding

measure µ̃ ∈M (T) by

µ̃(B) = µ

({cos(θ)

sin(θ)

 : θ ∈ B
})

for all Borel sets B⊆ T, we see that for any F ∈C([−1,1]) and µ ∈M (S1),

IF(µ) =
∫
T

∫
T

F(cos(θ −φ))dµ̃(θ)µ̃(φ) =
∫
T

∫
T

G(θ −φ)dµ̃(θ)dµ̃(φ).

Let G(θ) =F(cos(θ)) be an even function. Then for ν ,µ ∈P(Sd−1) such that dν̃(θ) =

dµ̃(θ)+dµ̃(−θ)
2 for all θ ∈ T, we have IF(µ) = IF(ν). Thus, for the rest of this subsection,

we may assume that µ ∈ P(S1) such that µ̃ is an even measure. We note that since G is an
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even function, its Fourier series is a cosine series, i.e. G(θ)∼
∞

∑
n=0

Ĝ(n)cos(nθ). As long

as this series converges absolutely, we can use it to compute the energy:

IF(µ) =
∞

∑
n=0

Ĝ(n)
∫
T

∫
T

cos(n(θ −φ)) dµ̃(θ)dµ̃(φ)

=
∞

∑
n=0

Ĝ(n)
∫
T

∫
T

(
cos(nθ)cos(nφ)+ sin(nθ)sin(nφ)

)
dµ̃(θ)dµ̃(φ).

(7.18)

Since µ̃ is an even measure, the sines do not contribute to the integral, and we have

IF(µ) =
∞

∑
n=0

Ĝ(n)

∫
T

cos(nθ)dµ̃(θ)

2

≤ Ĝ(0)+ ∑
n≥1: Ĝ(n)≥0

Ĝ(n). (7.19)

The equality above is achieved if and only if
∫
T

cos(nθ)dµ̃(θ) = 0 for each value of n≥ 1

for which Ĝ(n)< 0 and
∫
T

cos(nθ)dµ̃(θ) = 1 for each value of n≥ 1 such that Ĝ(n)> 0.

Lemma 7.2.1. Let G be even and have an absolutely convergent Fourier (cosine) series and

let σ̃N be the probability measure generated by point masses at N equally spaced points,

i.e.

σ̃N :=
1
N

N−1

∑
k=0

δ2πk/N .

Assume that for all n≥ 1 we have Ĝ(n)≥ 0 if n is a multiple of N, and Ĝ(n)≤ 0 otherwise.

Then the measure σN maximizes IF over T.

The proof easily follows from the discussion above and the fact that

∫
T

cos(nθ)dσ̃N(θ) =
1
N

N−1

∑
k=0

cos
2πnk

N
=


1, if n is a multiple of N,

0, otherwise.

Remark: The conditions on Ĝ(n) in Lemma 7.2.1 also become necessary if we assume

that σN maximizes IF over all signed probability measures, P̃(S1). This can be proved by
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considering signed measures of the form dµ̃ = dσ̃ − cosnθ dσ̃ .

Returning to our specific case, G(θ) = ϕ(cos(θ)) = min{|θ |,π − |θ |}, we observe

that according to definition (2.27) and relation (7.17), we have Ĝ(n) = ϕ̂(n,0) = − 4
πn2

whenever n≡ 2 mod 4, and Ĝ(n) = 0 for all other values of n≥ 1. Therefore, Lemma 7.2.1

with N = 4 applies and σ4 maximizes Iϕ . Since ϕ is an even function, symmetry implies

that µONB is also a maximizer, i.e. Conjecture 7.0.2 holds on S1.

Notice that alternatively, since Ĝ(n) ≤ 0 for all n ≥ 1, one could deduce from (7.19)

that Iϕ(µ) ≤ Ĝ(0) = Iϕ(σ). Therefore σ is a maximizer of the energy integral Iϕ , and,

due to (7.16), so is µONB, leading to another proof of Conjecture 7.0.2 (almost identical to

our proof involving the Chebyshev expansion). However, Lemma 7.2.1 could be applied to

determine a maximizer for an energy with both positive and negative Fourier coefficients,

allowing one to address a wider range of energy optimization problems, so we wanted to

include it here.

Stolarsky Principle

Finally, our last approach is yet another analogue of the Stolarsky Invariance Principle

(Theorem 5.1.1).

For x ∈ S1, define the antipodal quadrants in the direction of x as Q(x) = {y : |〈x,y〉|>
√

2
2 }, i.e. Q(x) is a union of two symmetric quarter-circle arcs with midpoints at x and −x.

The size of the intersection of two such sets is given by

σ
(
Q(y)∩Q(z)

)
=

1
2
− 1

π
arccos |y · z| (7.20)

as the left-hand side is 1
2 if z= y and 0 if z and y are orthogonal, and clearly changes linearly

with respect to the acute angle between the points.

We define the L2 discrepancy of a point set ωN = {z1, ...,zN} ⊂ S1 with respect to

these antipodal quadrants as the quadratic average of the difference between the empirical
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measure |Q(x)∩ωN |
N and the uniform measure σ

(
Q(x)

)
= 1

2 .

D2
L2,quad(ωN) =

∫
S1

∣∣∣∣∣ 1
N

N

∑
i=1

1Q(x)(zi)−σ
(
Q(x)

)∣∣∣∣∣
2

dσ(x). (7.21)

More generally, for a measure µ ∈ P(S1) we can define its discrepancy as

D2
L2,quad(µ) =

∫
S1

∣∣µ(Q(x)
)
−σ

(
Q(x)

)∣∣2 dσ(x), (7.22)

i.e. D2
L2,quad(ωN) = D2

L2,quad

( 1
N ∑z∈ωN δz

)
.

The following version of the Stolarsky principle holds:

Proposition 7.2.2 (Stolarsky principle for quadrants). For any measure µ ∈ P(S1) we have

D2
L2,quad(µ) =

1
π

(
Iϕ(σ)− Iϕ(µ)

)
=

1
4
− 1

π
Iϕ(µ). (7.23)

In particular, for a discrete point set ωN = {z1, ...,zN} ⊂ S1

D2
L2,quad(ωN) =

1
4
− 1

π
Eϕ(ωN). (7.24)

Proof. We use relations (7.22) and (7.20) to obtain

D2
L2,quad(µ) =

∫
S1

∫
S1

∫
S1

1Q(x)(y) ·1Q(x)(z)dσ(x)dµ(y)dµ(z)

−
∫
S1

∫
S1

1Q(x)(y)dσ(x)dµ(y)+
1
4

=
∫
S1

∫
S1

σ
(
Q(y)∩Q(z)

)
− 1

4
=

1
4
− 1

π

∫
S1

∫
S1

arccos(|〈y,z〉|)dµ(y)dµ(z),

which proves (7.23).

Remarks: Discrepancy with respect to similar sets, but with arbitrary apertures, (“wedges”)
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on Sd−1 arose in [BL17] in connection to sphere tessellations and one-bit sensing, which

led to a Stolarsky principle involving energies with the potential F(t) = arcsin(t)2. Ob-

serve also that Proposition 7.2.2 follows from our Generalized Stolarsky Principle (Theo-

rem 5.3.1), with f (t) = 1
[−1,−

√
2

2 )∪(
√

2
2 ,1]

(t) and F(t) = 1
2−

1
π

arccos(|t|). However, we have

provided a proof here that does not assume any positive definiteness.

Our Stolarsky principle (7.23) proves that Iϕ(µ)≤ π

4 and σ maximizes this energy, and

by (7.16) so does νONB proving Conjecture 7.0.2. In the discrete case, (7.24) shows that

Eϕ(ωN)≤ π

4 for even N and Eϕ(ωN)≤ π

4 ·
N2−1

N2 for odd N. It also allows one to characterize

the maximizers of Eϕ(ωN) and prove Conjecture 7.0.1: (7.24) implies that maximizing

Eϕ(ωN) is equivalent to minimizing the discrepancy D2
L2,quad(ωN). It is easy to see from

(7.21) that this happens exactly when the following holds: for σ -almost every x ∈ S1 the

difference between the number of points of ωN in Q(x) and in its complement
(
Q(x)

)c is

zero (when N is even) or ±1 (when N is odd). Equivalently, this should hold for any x

such that the boundary of Q(x) doesn’t intersect ωN , which recovers the characterization

in [FVZ16]. The extremizing configurations in Conjecture 7.0.1 obviously satisfy this

condition.

This method unfortunately does not hold for dimensions d ≥ 3, as 1
2 −

1
π

arccos(|t|) is

not positive definite on these spheres, so we cannot create an appropriate Stolarsky-type

invariance principle.
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Chapter 8

Energy with Multivariate Potentials

In this final chapter, we discuss optimization problems for more complicated energies,

defined by interactions of triples, quadruples, or even higher numbers of particles, i.e. en-

ergies of the type

EK(ωN) =
1

Nn ∑
x1,...,xn∈ωN

K(x1, ...,xn), (8.1)

IK(µ) =
∫
Ω

· · ·
∫
Ω

K(x1, . . . ,xn)dµ(x1) . . . dµ(xn), (8.2)

with n≥ 3. Energies of this type arise naturally in various fields:

1. In different branches of physics (nuclear, quantum, chemical, condensed matter, ma-

terial science, etc.), it has been suggested that, if the behavior of the system cannot be

accurately modeled by two-body interactions, more precise information may be ob-

tained from three-body or many-body interactions. Such forces are observed among

nucleons in atomic nuclei (three-nucleon force) [Zel09], in carbon nanostructures

[MS14], crystallization of atomistic configurations [FT15], cold polar molecules in

optical lattices [BMZ07], interactions of solid and liquid forms of silicon [SW85],

interactions between atoms [AT43], in “perfect glass” potentials [ZST16], and many

other areas.
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2. Energy integrals with multivariate kernels defined in (8.2) play the role of polynomi-

als on the space P(Ω) of probability measures on Ω – e.g., their linear span over all

n∈N is dense in the space of continuous functions on P(Ω), according to the Stone–

Weierstrass theorem. Such functionals on the space of measures appear in optimal

transport [San15] and mean field games [Lio08].

3. A classical example of a three-input energy, coming from geometric measure theory,

is given by the total Menger curvature of a measure µ

c2(µ) =
∫
Ω

∫
Ω

∫
Ω

c2(x,y,z)dµ(x)dµ(y)dµ(z), (8.3)

where c(x,y,z) = 1
R(x,y,z) and R(x,y,z) is the circumradius of the triangle xyz. This

object plays an important role in the study of the L2-boundedness of the Cauchy

integral, analytic capacity, and uniform rectifiability [Dav99, MMV96].

4. Some questions in probabilistic geometry admit natural reformulations in terms of

multi-input energies (8.1) or (8.2). For example, assume that three points are chosen

in a domain Ω, e.g. Ω = S2, independently at random, according to the probabil-

ity distribution µ . Which probability distribution maximizes the expected area of

the triangle generated by these random points or the volume of the parallelepiped

spanned by the random vectors? These quantities can be written as energy integrals

(8.1) with n = 3, and higher dimensional versions of such questions call for energies

with more inputs, which may be viewed as natural extensions of the classical Riesz

energy. Questions of this type are discussed in Section 8.8 and are explored in more

detail in [BFG+b].

5. Energies with more than two inputs akin to (8.1) appear in three-point bounds [CW12]

and, more generally, k-point bounds [dLMdOFV, Mus14] in semidefinite program-

ming [BV08] – a very fruitful method, which led to numerous breakthroughs in dis-

176



crete geometry. We shall briefly revisit this method in Section 8.7 and show some

applications to the aforementioned geometric problems in Section 8.8. A more com-

plete discussion of this method in the context of the multivariate energy optimization

and, in particular, applications to the geometric problems described in Section 8.8

can be found in [BFG+b].

6. Relations between the L2-discrepancy and the two-input energies, in particular, the

Stolarsky principle [Sto73], are well known [BDM18, Skr20]. In a similar spirit,

other Ln-norms of the discrepancy or “number variance” with integer values of n lead

to n-particle interaction energies (8.1). Some similar ideas have been put forward in

[Tor10].

Despite the abundance of applications, there seems to have been no systematic devel-

opment of a general theory of multi-input energies preceding [BFG+a,BFG+b], unlike the

case of classical two-input energies, which has been deeply and extensively explored. This

chapter covers the results of [BFG+a] (as well as some from [BFG+b]) which made the

first attempt to remedy this shortcoming. In these works, the author and coauthors study

the general properties of point configurations and measures, minimization of the multi-

input energies (8.1) and (8.2), and the relations between the structure of the multivariate

kernel K and the energy minimizers. This theory presents many intrinsic obstacles and is

far from a straightforward generalization of the two-input case. For instance, in the spheri-

cal case Ω = Sd−1 with rotationally invariant two-input kernel F(〈x,y〉), we know that the

uniform surface measure σ minimizes IF if and only if the F is conditionally positive def-

inite 3.3.1. However, in the multi-input case, such a characterization is still elusive: while

we obtain various natural sufficient conditions for the surface measure σ to minimize the

energy (8.1) in Section 8.4, counterexamples presented in Section 8.5 show that none of

them are necessary.

In Section 8.1 we introduce the notation and some of the main definitions, including the

notion of n-positive definiteness. In Section 8.2 we explore some basic properties of mul-
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tivariate energies. In particular, we analyze the connections between (conditional) positive

definiteness of the kernel K, convexity of the energy functional IK(µ), and arithmetic and

geometric mean inequalities for the mixed energies.

Section 8.3 deals with analogues of various results from Section 3.3, which provide

certain necessary (Theorem 8.3.2) and sufficient (Theorem 8.3.3) conditions for a measure

µ to be a minimizer of the n-input energy integral in terms of the (n− 1)-fold potential

of the kernel K with respect to µ . Even though some of these results by themselves are

clear-cut generalizations of standard statements for two-input energies, they yield several

interesting consequences in the n-input case. In particular, Theorem 8.3.7 states that, under

some additional assumptions (e.g., if K is n-positive definite), for any 1 ≤ k ≤ n− 2, if

the measure µ minimizes the (n− k)-input energy I
U µk

K
, where U µk

K is the k-fold integral of

K with respect to µ , then µ also minimizes the n-input energy IK . This statement allows

one to simplify proving that a given measure is a minimizer of a multi-input energy by

considering energies with a lower number of inputs. A partial converse to Theorem 8.3.7,

for k = n− 2, is given in Theorem 8.3.8. In addition, in Lemma 8.3.5, we show that, for

n-positive definite kernels, every local minimizer of IK is necessarily a global minimizer.

In Section 8.4 we adapt the methods of Section 8.3 to energies with rotationally invari-

ant kernels on the sphere Sd−1, where symmetries allow for a more delicate analysis, and

one has a natural candidate for a minimizer: the uniform surface measure σ . Theorem 8.4.1

states that energies with conditionally n-positive definite rotationally invariant kernels on

the sphere are minimized by the surface measure σ (without any additional assumptions).

As mentioned above, it turns out that, in contrast to the classical case n = 2, conditional n-

positive definiteness is not necessary for σ to minimize the n-input energy, which is shown

by examples presented in Propositions 8.6.3 and 8.6.4. Nevertheless, Theorem 8.4.1 allows

one to prove that σ minimizes a variety of interesting energies, which did not seem to be

accessible by different methods, see e.g. Corollary 8.4.2. In Theorem 8.4.3 we obtain very

close necessary and sufficient conditions for σ to be a local minimizer of the n-input energy
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IK in terms of the minimization properties of the two-input energy with the kernel given by

the (n− 2)-fold integral of K (or the conditional positive definiteness of this kernel). We

also conjecture these are the correct conditions for σ to be a global minimizer of IK .

Section 8.5 is dedicated to constructing various classes of n-positive definite kernels,

proving that certain kernels of interest are (conditionally) n-positive definite, whereas Sec-

tion 8.6 exhibits some naturally arising 3-input kernels on the sphere which are not con-

ditionally 3-positive definite, yet the corresponding energies are minimized by the surface

measure σ . These examples are presented in Propositions 8.6.1, 8.6.2, 8.6.3, and 8.6.4.

The first two are closely related to the semidefinite programming method, while the last

two are geometric.

In Section 8.7 we adapt the powerful method of semidefinite programming bounds

[BV08, CW12, Mus14] to our setting. While multi-input energies arise naturally in this

method, its applications were mainly focused on discrete configurations and energies,

rather than on minimizing measures and energy integrals. By adapting the results of [BV08]

to our setting, the formulation of Theorem 8.7.1 provides a way to determine that σ mini-

mizes the three-input energy for a wide class of functions.

Section 8.8 addresses some problems from probabilistic discrete geometry, which deal

with objects that can be viewed as multi-input analogues of the classical Riesz energies.

We show that if three random vectors are chosen in the sphere Sd−1 independently accord-

ing to the probability distribution µ , then the expected volume squared of the tetrahedron

generated by these vectors (Theorem 8.8.1) as well as the square of the area of the trian-

gle defined by these points (Theorem 8.8.4) are maximized if the distribution is uniform,

µ = σ . Both statements can be proved either by semidefinite programming or directly,

using ideas from linear algebra. While for the volume and area (without the square) these

questions remain open, we use our results to show that, for N = d + 1 points, the corre-

sponding discrete energy (the average area of the triangle or the average volume of the

tetrahedron) is maximized when the point configuration consists of the vertices of a regular
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simplex in Sd−1, see Corollary 8.8.6.

8.1 Background and Definitions

In what follows, we always assume that (Ω,ρ) is a compact metric space, n ∈ N \ {1},

and the kernel K : Ωn→ R is continuous and symmetric, i.e. for any permutation π ∈ Sn

and x1, ...,xn ∈Ω, K(x1, ...,xn) = K(xπ(1), ...,xπ(n)). Let ωN = {z1,z2, ...,zN} be an N-point

configuration (multiset) in Ω for N ≥ n. We define the discrete K-energy of ωN to be

EK(ωN) :=
1

Nn

N

∑
j1=1
· · ·

N

∑
jn=1

K(z j1, ...,z jn), (8.4)

and the minimal discrete N-point K-energy of Ω as

EK(Ω,N) := inf
ωN⊆Ω

EK(ωN). (8.5)

Let µ1, ...,µn ∈M (Ω), then we define their mutual energy as

IK(µ1, ...,µn) =
∫
Ω

· · ·
∫
Ω

K(x1, ...,xn)dµ1(x1) · · ·dµn(xn), (8.6)

and, for j < n, the j-th potential function as

U µ1,...,µ j
K (x j+1, ...,xn) =

∫
Ω

· · ·
∫
Ω

K(x1, ...,xn)dµ1(x1) · · ·dµ j(x j). (8.7)

Note that since we are working with continuous K, the energy is well-defined for all

finite signed Borel measures. We will abuse notation by writing µk if k of the measures are

the same and define the K-energy of a measure µ ∈M (Ω) by

IK(µ) = IK(µ
n) = IK(µ, ...,µ), (8.8)
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and the minimal K-energy over all probability measures by

IK(Ω) = inf
µ∈P(Ω)

IK(µ). (8.9)

The definitions of discrete (8.4) and continuous (8.8) energies are compatible in the sense

that

EK(ωN) = IK(µωN ), where µωN =
1
N

N

∑
j=1

δz j (8.10)

and due to the weak∗ density of the linear span of Dirac masses in P(Ω)

lim
N→∞

EK(Ω,N) = IK(µ). (8.11)

We can extend the classical notion of positive definiteness for two-input kernels to n-

input kernels by demanding that, if one fixes arbitrary values of all but two variables, the

resulting two-input kernel is positive definite in the classical sense. For every m < n and

z1,z2, ...,zm ∈Ω, we define

Kz1,z2,...,zm(x1, ...,xn−m) := K(z1, ...,zm,x1, ...,xn−m). (8.12)

Definition 8.1.1. We shall say that a continuous symmetric kernel K : Ωn→ R is (condi-

tionally) n-positive definite if, for all z1,z2, ...,zn−2 ∈ Ω, the two-input kernel Kz1,...,zn−2 is

(conditionally) positive definite in the sense of Definition 2.2.1.

We would like to emphasize that this definition relies more on the pointwise two-

variable structure, rather than the full set of variables. In particular, it does not have

any connection to positive definite tensors [Qi05]. Thus, it may appear that the name

n-positive definite might be somewhat misleading. However, from the point of view of

energy optimization, which is the main theme of this work, this nomenclature seems abso-

lutely justified. Indeed, in various statements about minimal energy (e.g., Theorem 8.3.3,
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Corollary 8.3.4, Theorem 8.4.1), this condition naturally replaces positive definiteness of

classical two-input kernels. In addition, non-symmetric multivariate kernels of similar fla-

vor have been considered in the context of k-point bounds in semidefinite programming

[dLMdOFV,Mus14]. The class of n-positive definite kernels is rather rich: throughout this

chapter, particularly in Section 8.5, we present numerous examples of functions with this

property.

We immediately observe that this property is inherited by kernels with a lower num-

ber of inputs, which are obtained as potentials of K with respect to arbitrary probability

measures.

Lemma 8.1.2. Let n > 2 and assume that K is (conditionally) n-positive definite. Then for

every µ ∈ P(Ω), the potential U µ

K (x1, . . . ,xn−1) is (conditionally) (n−1)-positive definite.

Proof. Let ν be a finite signed Borel measure on Ω (with ν(Ω) = 0 if K is conditionally

n-positive definite). Then by Fubini–Tonelli

I(
U µ

K

)
z2,...,zn−2

(ν) =
∫
Ω

∫
Ω

∫
Ω

K(z1,z2, . . . ,zn−3,zn−2,x,y)dµ(z1) dν(x)dν(y)

=
∫
Ω

∫
Ω

∫
Ω

Kz1,...,zn−2(x,y)dν(x)dν(y) dµ(z1)≥ 0,

since Kz1,...,zn−2 is (conditionally) positive definite for all z1, ...,zn−2 ∈Ω.

As a corollary of Lemma 8.1.2, we observe that if K : Ωn→R is (conditionally) n-positive

definite, then for all µ1, ...,µk ∈ P(Ω), with k ≤ n−2, U µ1,...,µk
K (xk+1, ...,xn) is (condition-

ally) (n− k)-positive definite.

Naturally, (conditionally) n-positive definite kernels enjoy the same basic properties as

their classical two-variable counterparts. The following result generalizes Lemma 2.2.3 to

n-input kernels and immediately follows this lemma as well.

Lemma 8.1.3. If K and L are n-positive definite, then so are K +L and KL. If K1,K2, ...

are n-positive definite and limn→∞ Kn = K uniformly, then K is n-positive definite. The
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statements about the sum and the limit (but not about the product) continue to hold if we

replace n-positive definite with conditionally n-positive definite.

8.2 First Principles

In this section we explore some basic properties related to (conditional) n-positive definite-

ness, such as inequalities for mixed energies and convexity of the energy functionals, as

well as connections between these notions, much as we did in the two input case in Section

3.3. All the kernels in this section are assumed to be continuous and symmetric.

Bounds on Mutual Energies

The arithmetic and geometric mean inequalities (3.1) and (3.2) can be extended to n-input

energies with (conditionally) n-positive definite kernels.

Lemma 8.2.1. Suppose K is a conditionally n-positive definite kernel on Ωn. Then for every

n-tuple of Borel probability measures µ1, . . . ,µn on Ω, the mutual energy IK(µ1, . . . ,µn)

satisfies

IK(µ1, . . . ,µn)≤
1
n

n

∑
j=1

IK(µ j). (8.13)

If, moreover, K is n-positive definite,

IK(µ1, . . . ,µn)≤
n

∏
j=1

n
√

IK(µ j). (8.14)

Proof. We only prove (8.14), as one could repeat the proof below verbatim, with the multi-

plicative notation replaced by the additive, to arrive at (8.13) (when K is n-positive definite,

it would also follow from the arithmetic–geometric mean inequality).

By Lemma 3.1.2, our claim holds for n = 2. Now, suppose our claim holds for some

k ≥ 2, and let µ1, ...,µk+1 ∈ P(Ω). Lemma 8.1.2 tells us that for 1 ≤ j ≤ k + 1, U µ j
K is
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k-positive definite, so by our inductive hypothesis

IK(µ1, ...,µk+1) = IU µ1
K
(µ2, ...,µk+1)≤

k

∏
j=1

k
√

IK(µ1,µ
k
j+1). (8.15)

Again using the inductive hypothesis, and the fact that K is symmetric, we have that for

1≤ j ≤ k,

IK(µ1,µ
k
j+1) = IK(µ j+1,µ1,µ

k−1
j+1 )

≤ k
√

IK(µ j+1,µ
k
1)

k
√

IK(µ j+1)k−1

= k
√

IK(µ1,µ j+1,µ
k−1
1 ) k

√
IK(µ j+1)k−1

≤ k2
√

IK(µ1)k−1 k2
√

IK(µ1,µ
k
j+1)

k
√

IK(µ j+1)k−1,

where in the second and last lines we have used (8.15). Rearranging the terms, we have

(
IK(µ1,µ

k
j+1)

) k2−1
k2 ≤ IK(µ1)

k−1
k2 IK(µ j+1)

k−1
k ,

so that

k
√

IK(µ1,µ
k
j+1)≤ IK(µ1)

1
k(k+1) IK(µ j+1)

1
k+1 .

Plugging this back into (8.15), we have

IK(µ1, ...,µk+1)≤
k

∏
j=1

k
√

IK(µ1,µ
k
j+1)≤

k+1

∏
j=1

k+1
√

IK(µ j). (8.16)

Our claim then follows via induction.

The upper bound (8.13) allows us to prove a corresponding lower bound for the mixed

energy:
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Corollary 8.2.2. If K is n-positive definite on Ωn, then for all µ1, ...,µn ∈ P(Ω),

− 1
n

n

∑
j=1

IK(µ j)≤ IK(µ1, ...,µn). (8.17)

Proof. Suppose n = 2, and let µ1,µ2 ∈ P(Ω). Setting µ = 1
2(µ1 +µ2), we have

0≤ 4IK(µ) = IK(µ1)+ IK(µ2)+2IK(µ1,µ2),

since K is positive definite, and (8.17) follows.

Now suppose our claim holds for some k ≥ 2, and let µ1, ...,µk+1 ∈ P(Ω). Since by

Lemma 8.1.2 the potential U µ1
K is k-positive definite, the inductive hypothesis implies that

−1
k

k

∑
j=1

IU µ1
K
(µ j+1)≤ IU µ1

K
(µ2, ...,µk+1) = IK(µ1, ...,µk+1).

For 1≤ j ≤ k, Lemma 8.2.1 gives us that

IU µ1
K
(µ j+1) = IK(µ1,µ

k
j+1)≤

1
k+1

(
IK(µ1)+ kIK(µ j+1)

)
,

leading to

− 1
k+1

k+1

∑
j=1

IK(µ j)≤ IK(µ1, ...,µk+1),

which finishes the proof of the claim.

Lemma 8.2.1 and Corollary 8.2.2 imply that if K is n-positive definite on Ωn and

µ1, ...,µn ∈ P(Ω), then ∣∣IK(µ1, ...,µn)
∣∣≤ 1

n

n

∑
j=1

IK(µ j). (8.18)

Of course, since we can choose the probability measures µk to be Dirac masses, inequality

(8.18) yields pointwise bounds on K. For instance, if K is n-positive definite, then for all
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z1, ...,zn ∈Ω, ∣∣K(z1, ...,zn)
∣∣≤ 1

n

n

∑
j=1

K(z j, ...,z j),

and for conditionally n-positive definite kernels K, this inequality holds without the abso-

lute value. Clearly then, K must achieve its maximum value on its diagonal, something that

is already known for the two-input case.

Corollary 8.2.3. Suppose K is a conditionally n-positive definite kernel. Then

K(z1, . . . ,zn)≤max
z∈Ω

{K(z, . . . ,z)}. (8.19)

Convexity

As in the two-input case, convexity of the underlying energy functionals naturally plays an

important role in energy minimization.

Definition 8.2.4. Suppose K : Ωn→ R. We say that IK is convex at µ ∈ P(Ω) if for every

ν ∈ P(Ω) there exists some tν ∈ (0,1], such that for all t ∈ [0, tν),

IK((1− t)µ + tν)≤ (1− t)IK(µ)+ tIK(ν). (8.20)

We say IK is convex on P(Ω) if inequality (8.20) holds for every µ , ν ∈ P(Ω) and all

t ∈ [0,1].

As in the two-input case, we observe that convexity of IK on P(Ω) is equivalent to the

fact that IK is convex at all µ ∈ P(Ω). Indeed, if (8.20) fails for some µ , ν ∈ P(Ω), then

the polynomial f (t) = IK((1− t)µ + tν) is not convex on the interval [0,1], i.e. f ′′(t) < 0

on some subinterval [a,b] ⊂ [0,1]. But in this case, one can easily see that IK fails to be

convex at µa = (1−a)µ +aν .

We know that conditional positive definiteness of the kernel K is equivalent to convexity

of the corresponding energy functional IK in the case n = 2 (Proposition 3.1.6). As the
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next proposition shows, a one-sided implication holds for n ≥ 3: convexity of IK can be

deduced from relaxed arithmetic or geometric mean inequalities akin to (8.13) and (8.14).

This implies, due to Lemma 8.2.1, that conditionally n-positive definite kernels K give rise

to convex energies.

Proposition 8.2.5. Let K : Ωn→ R be continuous and symmetric and fix µ ∈ P(Ω). Sup-

pose that for all ν ∈ P(Ω) and 0≤ k ≤ n,

IK(µ
k,νn−k)≤ k

n
IK(µ)+

n− k
n

IK(ν). (8.21)

Alternatively, assume that for all ν ∈ P(Ω) we have IK(ν)≥ 0 and for all 0≤ k ≤ n

IK(µ
k,νn−k)≤

(
IK(µ)

) k
n ·
(
IK(ν)

) n−k
n . (8.22)

Then IK is convex at µ . If (8.21) or (8.22) holds for all µ ∈ P(Ω), then IK is convex on

P(Ω).

Proof. Assume that (8.21) holds. For all t ∈ [0,1], we have

IK((1− t)µ + tν) =
n

∑
k=0

(1− t)ktn−k
(

n
k

)
IK(µ

k,νn−k)

≤
n

∑
k=0

(1− t)ktn−k
(

n
k

)(
k
n

IK(µ)+
n− k

n
IK(ν)

)

=
n

∑
k=1

(1− t)ktn−k
(

n−1
k−1

)
IK(µ)+

n−1

∑
k=0

(1− t)ktn−k
(

n−1
k

)
IK(ν)

= (1− t)IK(µ)+ tIK(ν),

which proves convexity of the energy functional. The multiplicative inequality (8.22) im-

plies (8.21) by the arithmetic-geometric mean inequality, leading to convexity of K in this

case.

Observe that Proposition 8.2.5 admits a partial converse:
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Lemma 8.2.6. Suppose µ ∈ P(Ω) is such that IK is convex at µ . Then for all ν ∈ P(Ω),

IK(µ
n−1,ν)≤ n−1

n
IK(µ)+

1
n

IK(ν). (8.23)

Proof. Let ν ∈ P(Ω). Assume t ∈ (0,1) such that (8.20) holds. Then

tIK(ν)+(1− t)IK(µ)≥ IK(tν +(1− t)µ)

=
n

∑
j=0

(1− t) jtn− j
(

n
j

)
IK(µ

j,νn− j).

Clearly then

(
t− tn

)
IK(ν)+

(
(1− t)− (1− t)n

)
IK(µ)≥

n−1

∑
j=1

(1− t) jtn− j
(

n
j

)
IK(µ

j,νn− j),

and dividing by t(1− t), we obtain

(n−2

∑
k=0

tk
)

IK(ν)+
(n−2

∑
l=0

(1− t)l
)

IK(µ)≥
n−1

∑
j=1

(1− t) j−1tn− j−1
(

n
j

)
IK(µ

j,νn− j).

If IK is convex at µ , then we may take the limit as t goes to 0, which gives us

IK(ν)+(n−1)IK(µ)≥ nIK(µ
n−1,ν).

We note that if IK is convex (in particular, convex at ν), then by switching the roles of

µ and ν we obtain

(n−1)IK(ν)+ IK(µ)≥ nIK(µ,ν
n−1).

Therefore, in the case n = 2,3, Lemma 8.2.6 provides the converse of Proposition 8.2.5, in

other words, IK is convex if and only if it satisfies the arithmetic mean inequalities (8.21).

Lemma 8.2.1 with µ1 = · · · = µk = µ and µk+1 = · · · = µn = ν shows that inequality
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(8.21) holds if K is conditionally n-positive definite. This leads to the following corollary.

Corollary 8.2.7. If K is conditionally n-positive definite, then IK is convex on P(Ω).

It is not completely clear whether the equivalence from Proposition 3.1.6 holds for

n ≥ 3 in the equivalence holds for n ≥ 3, but evidence suggests that it does not. Indeed,

Proposition 8.6.1 provides an example of a rotationally invariant three-input kernel with

Ω = Sd−1, which is not conditionally 3-positive definite, but at the same time the energy

functional is convex at σ (although we do not know if it is convex at all measures in

P(Sd−1)) and is minimized by σ , which we know would be impossible in the two-input

case.

In this regard, we would also like to point out that a number of our results about energy

minimizers do not require the full power of convexity of IK on P(Ω), but rather just the

convexity at the presumptive minimizer µ . In particular, condition (8.26), which appears

in Theorems 8.3.3 and 8.3.7, is implied by inequality (8.23) of Lemma 8.2.6, and hence it

holds if IK is convex at µ .

Using convexity of the energy functional, one can draw a connection between minimiz-

ing the n-input energy IK and the (n− 1)-input energy IU µ

K
, thus obtaining our first result

about minimizers of multi-input energies.

Proposition 8.2.8. Let n≥ 3. Assume that K : Ωn→ R is continuous and symmetric, IK is

convex, and that µ ∈ P(Ω) is a minimizer of IU µ

K
. Then µ is a minimizer of IK .

Proof. We first prove that if the energy IK is convex and µ , ν ∈ P(Ω), then

IK(ν)− IK(µ)≥
n

n−1

(
IU µ

K
(ν)− IU µ

K
(µ)
)
. (8.24)

Indeed, we have IU µ

K
(µ) = IK(µ) and, by Lemma 8.2.6, IU µ

K
(ν) = IK(µ,ν

n−1)≤ 1
n IK(µ)+
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n−1
n IK(ν). Thus,

IK(ν)− IK(µ)−n
(

IU µ

K
(ν)− IU µ

K
(µ)
)
= IK(ν)−nIK(µ,ν

n−1)+(n−1)IK(µ)

≥ (n−2)
(

IK(µ)− IK(ν)
)
,

which implies inequality (8.24).

Inequality (8.24), together with the fact that µ is a minimizer of IU µ

K
, implies that for all

ν ∈ P(Ω), we have

IK(ν)− IK(µ)≥
n

n−1

(
IU µ

K
(ν)− IU µ

K
(µ)
)
≥ 0,

hence µ minimizes IK .

Proposition 8.2.8 can be viewed as a precursor of some of our more advanced results

from Section 8.3 which show that there is a strong relation between µ minimizing the n-

input energy IK and the energy functional I
U µk

K
with a lower number of inputs. In fact,

Theorem 8.3.7 contains Proposition 8.2.8 as a special case. We have nevertheless decided

to include this proposition, as it admits a very transparent and elementary proof, which also

provides a quantitative relation between the minimization of IK and IU µ

K
.

8.3 Minimizers of the Energy Functional

We finally turn to some of the general results about minimizers of energies with multivari-

ate kernels. It is clear from various results in Chapter 3 that in the classical two-input case,

properties of minimizing measures are closely related to their potentials. Direct analogues

of these statements can be obtained for multi-input energies. We start with the necessary

condition, which is a generalization of Theorem 3.1.7 and Corollary 3.1.9, stating that the

potential of a local minimizer is constant on its support. As before, in all of the state-

ments of this section we assume that K : Ωn→ R is continuous and symmetric, even if not
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explicitly stated.

We define a local minimizer the same way we did for the two-input case:

Definition 8.3.1. We shall say that µ is a local minimizer of IK if it is a local minimizer in

every direction, in other words, if for each ν ∈ P(Ω), there exists tν ∈ (0,1] such that for

all t ∈ [0, tν ] we have

IK
(
(1− t)µ + tν

)
≥ IK(µ).

Observe that this definition differs from the definition of local minimizers with respect to

some metric, such as the Wasserstein d∞ metric or the total variation norm (the difference

is similar to that between the Gateaux and Fréchet derivatives).

Theorem 8.3.2. Let K : Ωn→ R be continuous and symmetric. Suppose that µ is a local

minimizer of IK over P(Ω). Then U µn−1

K (x) = IK(µ) on supp(µ) and U µn−1

K (x)≥ IK(µ) on

Ω.

Proof. The proof is a simple extension of the proof of Theorem 3.1.7 and we include it

for the sake of completeness. Let ν ∈ P(Ω), tν be as in Definition 8.3.1, and ν̃ = ν−µ ∈

Z (Ω). Then for all 0≤ t ≤ 1 and µ + tν̃ = (1− t)µ + tν ∈ P(Ω), and satisfies

IK(µ)≤ IK(µ + tν̃) =
n

∑
k=0

(
n
k

)
tkIK(µ

n−k, ν̃k).

Thus, for 0≤ t ≤ tν ,

0≤ t

(
n

∑
k=1

(
n
k

)
tk−1IK(µ

n−k, ν̃k)

)
.

This means that IK(µ
n−1, ν̃)≥ 0.

Suppose, indirectly, that there exist a,b ∈ R, z ∈ supp(µ) and y ∈Ω such that

a =U µn−1

K (z)>U µn−1

K (y) = b.

Let B be a ball centered at z, small enough so that y 6∈ B and oscillation of U µn−1

K (x) is at
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most a−b
2 , and let m = µ(B). Let ν be defined by

ν(A) = µ(A)+mδy(A)−µ(A∩B). (8.25)

Then

IK(µ
n−1, ν̃) =U µn−1

K (y) ·m−
∫
B

U µn−1

K (x)dµ(x)≤ bm−
(

a− a−b
2

)
m < 0,

which is a contradiction. Thus, if U µn−1

K (z) = a for some z ∈ supp(µ), then U µn−1

K (x) ≥ a

for all x ∈Ω. Our claim then follows.

In general, the converse to Theorem 8.3.2 is not true. However, with some additional

convexity assumptions, the necessary condition for µ to be a global minimizer also be-

comes sufficient.

Theorem 8.3.3. Let K : Ωn → R be symmetric and continuous. Suppose that for some

µ ∈ P(Ω), there exists a finite constant M such that U µn−1

K (x)≥M on Ω and U µn−1

K (x) = M

on supp(µ). Suppose further that for all ν ∈ P(Ω), there exists some a ∈ (0,1), possibly

depending on ν , such that

IK(µ
n−1,ν)≤ aIK(ν)+(1−a)IK(µ). (8.26)

Then µ is a minimizer of IK .

Proof. For any ν ∈ P(Ω), for some a ∈ (0,1), we have

IK(µ) =
∫
Ω

U µn−1

K (x)dµ(x)≤
∫
Ω

U µn−1

K (x)dν(x) = IK(µ
n−1,ν)≤ aIK(ν)+(1−a)IK(µ),

hence IK(µ)≤ IK(ν).

Some remarks concerning the assumptions of Theorem 8.3.3, i.e. condition (8.26), are
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in order. Due to Lemma 8.2.6, convexity of the energy functional IK at µ implies condition

(8.26) with a = 1
n . In turn, if K is conditionally n-positive definite, Corollary 8.2.7 states

that IK is convex, and hence again condition (8.26) is satisfied (alternatively, Lemma 8.2.1

shows directly that conditional n-positive definiteness of K implies the convexity condition

(8.26) of Theorem 8.3.3 with a = 1
n ). The hierarchy of these conditions can be summarized

in the following diagram:

K is n-positive definite =⇒ K is conditionally n-positive definite =⇒ (8.27)

=⇒ IK is convex =⇒ IK is convex at µ =⇒ condition (8.26) holds.

Therefore, Theorem 8.3.3 (as well as other statements relying on (8.26), e.g. Lemma 8.3.5

or Theorem 8.3.7) may be applied under the assumptions that K is (conditionally) n-positive

definite or that IK is convex at µ .

We also make the following remark: in the case when µ has full support, i.e. supp(µ) =

Ω, if the first condition of Theorem 8.3.3 holds, i.e. U µn−1

K (x) = M for all x ∈ Ω, then

IK(µ
n−1,ν) = IK(µ), and the assumption (8.26) is obviously the same as the conclusion of

Theorem 8.3.3. This does not, however, render this case of the theorem useless – on the

contrary, if one replaces (8.26) with one of the stronger conditions in (8.27), one obtains an

interesting and meaningful statement. (This shows that most of the content is hidden in the

implications presented in (8.27).) We summarize this case in a separate corollary, as it will

be of use later.

Corollary 8.3.4. Let K : Ωn → R be symmetric and continuous. Suppose that µ ∈ P(Ω)

has full support (supp(µ) = Ω) and that there exists a constant M such that U µn−1

K (x) = M

on Ω. Assume also that any of the conditions in (8.27) holds (e.g., K is n-positive definite

or IK is convex). Then µ is a minimizer of IK .

We also observe that Theorems 8.3.2 and 8.3.3 imply the following local-to-global

principle for minimizers of IK under convexity assumptions.
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Lemma 8.3.5. Let n≥ 2 and let µ be a local minimizer of the energy functional IK . Assume

also that condition (8.26) is satisfied. Then µ is a global minimizer of IK over P(Ω).

Proof. Theorem 8.3.2 shows that the first condition of Theorem 8.3.3 holds. Together with

condition (8.26), this implies that µ is a global minimizer of IK .

Naturally, the set of minimizers of a convex functional is convex. By Corollary 8.2.7,

for conditionally n-positive definite kernels, the energy IK is convex, i.e. minimizers of IK

form a convex set in this case.

Proposition 8.3.6. Let K be a conditionally n-positive definite kernel. Then the set of

minimizers of the energy IK is convex.

Proof. For two minimizers µ,ν of IK , and all t ∈ [0,1], by convexity of energy,

IK(ν)≤ IK
(
(1− t)µ + tν

)
≤ (1− t)IK(µ)+ tIK(ν) = IK(ν).

Hence, IK
(
(1− t)µ + tν

)
= IK(ν) and (1− t)µ + tν minimizes IK .

While Theorems 8.3.2 and 8.3.3 are straightforward generalizations of the correspond-

ing facts for the classical two-input energies, they lead to some interesting consequences for

energies with multivariate kernels. In particular, we start by showing that under condition

(8.26), if µ minimizes the lower input energy with the kernel U µk

K , then it also minimizes

the original n-input energy IK .

Theorem 8.3.7. Let K : Ωn → R, n ≥ 3, be symmetric and continuous. Assume that for

some 1 ≤ k ≤ n− 2, the measure µ ∈ P(Ω) (locally) minimizes the (n− k)-input energy

I
U µk

K
. Assume also that µ satisfies condition (8.26) of Theorem 8.3.3. Then µ minimizes the

n-input energy IK .

Proof. Theorem 8.3.2 applied to the kernel U µk

K implies that for all x ∈Ω

U µn−1

K (x) =U µn−k−1

U µk
K

(x)≥ I
U µk

K
(µ) = IK(µ)
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with equality for x ∈ supp(µ). Condition (8.26) then allows one to invoke Theorem 8.3.3,

which shows that µ minimizes IK .

The converse to Theorem 8.3.7 holds for k = n−2 even without any convexity assump-

tions: in this case, if µ locally minimizes IK , it also locally minimizes the two-input energy

I
U µn−2

K
. Moreover, under the additional condition that µ has full support, one can deduce

that the measure µ is a global minimizer of I
U µn−2

K
, which follows from Theorem 3.3.1,

though we prove it directly here. Furthermore, this implication may be reversed, if one ad-

ditionally assumes that µ uniquely minimizes I
U µn−2

K
. Observe that, unlike Theorem 8.3.7,

part (3) of Theorem 8.3.8 does not require any of the conditions of (8.27) and, unlike part

(2), it does not require the condition supp(µ) = Ω.

Theorem 8.3.8. Let K : Ωn→ R, n≥ 3, be symmetric and continuous and let µ ∈ P(Ω).

1. Let µ be a local minimizer of IK . Then µ is a local minimizer of the two-input energy

I
U µn−2

K
.

2. Let µ be a local minimizer of IK and assume, in addition, that µ has full support, i.e.

supp(µ) = Ω. Then µ minimizes the two-input energy I
U µn−2

K
over P(Ω).

3. If µ is the unique minimizer of I
U µn−2

K
in P(Ω), then µ is a local minimizer of IK .

Proof. Fix an arbitrary measure ν ∈P(Ω). For t ∈ [0,1], let us define two functions gν(t) =

IK
(
(1−t)µ+tν

)
and hν(t)= I

U µn−2
K

(
(1−t)µ+tν

)
= IK

(
µn−2,

(
(1−t)µ+tν

)2). We have

gν(t) = (1− t)nIK(µ)+nt(1− t)n−1IK(µ
n−1,ν)+

(
n
2

)
t2(1− t)n−2IK(µ

n−2,ν2)+Rν(t),

where each term in Rν(t) contains a factor of the form tk with k≥ 3 and, therefore, R′ν(0) =

R′′ν(0) = 0,

hν(t) = (1− t)2IK(µ)+2t(1− t)IK(µ
n−1,ν)+ t2IK(µ

n−2,ν2).
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A direct (elementary, but lengthy) computation, which we omit, shows that

h′ν(0) =
2
n

g′ν(0) = 2
(
IK(µ

n−1,ν)− IK(µ)
)
, (8.28)

h′′ν(0) =
2

n(n−1)
g′′ν(0) = 2

(
IK(µ)−2IK(µ

n−1,ν)+ IK(µ
n−2,ν2)

)
. (8.29)

We now start by proving (1). Let µ be a local minimizer of IK . According to Corollary

3.1.9, we have that U µn−1

K (x) ≥ IK(µ) on Ω and therefore, IK(µ
n−1,ν) ≥ IK(µ) for any

ν ∈ P(Ω). Since gν has a local minimum at t = 0, either g′ν(0) > 0, or g′ν(0) = 0 and

g′′ν(0) ≥ 0. In the first case, we also have h′ν(0) > 0. In the second case, h′ν(0) = 0 and

h′′ν(0)≥ 0, and since hν is quadratic, this implies that hν(t) = at2 +b with a≥ 0. Thus, hν

has a local minimum at t = 0 for each ν ∈ P(Ω), i.e. µ is a local minimizer of I
U µn−2

K
.

If in addition µ has full support, then Corollary 3.1.9 implies that for any ν ∈ P(Ω), we

have IK(µ
n−1,ν) = IK(µ). Therefore, relations (8.28)-(8.29), together with the fact that gν

has a local minimum at t = 0, show that g′ν(0) = 0, hence g′′ν(0)≥ 0, and at the same time

g′′ν(0) = n(n−1)
(
IK(µ

n−2,ν2)− IK(µ)
)
= n(n−1)

(
I
U µn−2

K
(ν)− I

U µn−2
K

(µ)
)
. (8.30)

Hence, µ is a global minimizer of I
U µn−2

K
, which proves part (2).

To prove (3), assume that µ is the unique global minimizer of I
U µn−2

K
. Observe that,

since the potential of U µn−2

K with respect to µ is U µn−1

K , Theorem 8.3.2 applied to U µn−2

K

implies that, just like in part (1), we have IK(µ
n−1,ν) ≥ IK(µ). Thus, g′ν(0) ≥ 0 by

(8.28). If g′ν(0) > 0, there is a local minimum at t = 0. If, however, g′ν(0) = 0, then

IK(µ
n−1,ν) = IK(µ) and relation (8.30) holds. Since µ uniquely minimizes I

U µn−2
K

, this

proves that g′′ν(0)> 0 for ν 6= µ . Hence, in each case, gν has a local minimum at t = 0, i.e.

µ is a local minimizer of IK .

Applying Theorem 3.3.1, we obtain the following corollary to part (2) of Theorem

8.3.8:
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Corollary 8.3.9. Assume that µ ∈ P(Ω) with supp(µ) = Ω is a local minimizer of IK . Then

the (n−2)-fold potential of K with respect to µ , i.e. the two-variable function U µn−2

K (x,y),

is conditionally positive definite on Ω.

Observe that, if the kernel K is conditionally n-positive definite, then, according to

Lemma 8.1.2, U µn−2

K (x,y) is conditionally positive definite. Moreover, Theorem 8.3.7 ap-

plies for conditionally positive definite kernels K. Therefore, the statement of Corollary

8.3.9 may be viewed as a partial converse of Theorem 8.3.7 for conditionally positive def-

inite kernels. This interplay will manifest itself in an even stronger fashion on the sphere,

the situation to be explored in Section 8.4.

8.4 Multi-input Energy on the Sphere

We now restrict our attention to the unit sphere Sd−1, where the symmetries and structure

of the domain allow one to deduce additional information about energy minimization. One

of the most natural questions is whether the normalized uniform surface measure σ mini-

mizes the energy functional over P(Sd−1), or, in other words, whether energy minimization

induces uniform distribution.

In this section, we shall be interested in kernels, which (in addition to being continuous

and symmetric) are rotationally invariant, i.e. have the form

K(x1, . . . ,xn) = F
(
(〈xi,x j〉)n

i, j=1

)
, (8.31)

in other words, they depend only on the Gram matrix of {x1, . . . ,xn} ⊂ Sd−1. When n = 2,

one obtains classical pairwise interaction kernels of the form K(x,y) = F(〈x,y〉), which

has been thoroughly discussed in previous chapters. In the case n = 3 rotationally invariant

kernels are functions of the form

K(x,y,z) = F(〈x,y〉,〈x,z〉,〈z,y〉) = F(t,u,v), (8.32)
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where we set t = 〈x,y〉, u = 〈x,z〉, v = 〈z,y〉, and we shall keep this notation, which comes

from [BV08], throughout the text.

Observe that, if the n-input kernel K is rotationally invariant, its potential with respect

to σ is again rotationally invariant. Indeed, for any V ∈ SO(d), we have

Uσ
K (V x1, . . . ,V xn−1) =Uσ

K (x1, . . . ,xn−1), (8.33)

which easily follows from (8.31) and the facts that 〈xi,x j〉 = 〈V xi,V x j〉 and 〈V xi,xn〉 =

〈xi,V−1xn〉, 1 ≤ i, j ≤ n− 1, together with the rotational invariance of σ , i.e. dσ(xn) =

dσ(V−1xn). Iterating this observation, one finds that all k-fold potentials of K with respect

to σ , i.e. functions Uσ k

K with 1 ≤ k ≤ n−1, are rotationally invariant. In particular, when

k = n−2, the two-input kernel Uσn−2

K depends only on the inner product of the inputs, and

for k = n−1, the potential Uσn−1

K is just a constant:

Uσn−2

K (x,y) = G(〈x,y〉) = G(t) and Uσn−1

K (x) = const = IK(σ). (8.34)

Recall that Theorem 8.3.2 would guarantee the latter condition in the case when σ is a

minimizer of IK . However, for rotationally invariant kernels, this is automatically satisfied,

which facilitates the application of the results of Section 8.3 and will play an important role

later, in Theorem 8.4.1.

Turning to the primary task of understanding when σ minimizes IK , we first remind

ourselves that in the classical case of a two-input energy with a rotationally invariant kernel

G(〈x,y〉) on Sd−1, the answer to this question is well understood, see, e.g. Theorem 3.3.1

and Proposition 3.5.1. In particular, the following three conditions are equivalent:

1. The uniform surface measure σ minimizes IG over P(Sd−1).

2. The kernel G is conditionally positive definite on Sd−1.

3. The kernel G is positive definite on Sd−1 up to a constant term, i.e. there exists a
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constant c ∈ R such that G+ c is positive definite on Sd−1 (in fact, one can take

c =−IG(σ)).

Our goal is to generalize these statements (at least partially) to the case of multi-input

energies. We observe that, if a symmetric rotationally invariant kernel K is condition-

ally n-positive definite on Sd−1, then, according to Lemma 8.1.2, the potential G(〈x,y〉) =

Uσn−2

K (x,y) is also conditionally positive definite, and hence, by the discussion above, σ is

a minimizer of the two-input energy I
Uσn−2

K
. Therefore, since conditionally n-positive def-

inite kernels satisfy condition (8.26), Theorem 8.3.7 with k = n−2 applies and we obtain

the following statement:

Theorem 8.4.1. Suppose that K : (Sd−1)n→ R is continuous, symmetric, rotationally in-

variant, and conditionally n-positive definite on Sd−1. Then σ is a minimizer of IK over

P(Ω).

This theorem also easily follows from Theorem 8.3.3 and the remarks thereafter (or, more

precisely, from Corollary 8.3.4), since, as explained above, the potential Uσn−1

K is constant

on Sd−1. In addition, we notice that, unlike some statements of Section 8.3, such as The-

orem 8.3.7, for rotationally invariant kernels in the theorem above, one does not need to

assume anything about energies with a lower number of inputs – conditional n-positive

definiteness alone suffices.

Theorem 8.4.1 immediately yields some interesting examples:

Corollary 8.4.2. Let f : [−1,1]→R be a real-analytic function with nonnegative Maclau-

rin coefficients and let F(t,u,v) = f (tuv). Then, for K defined as in (8.32), the uniform

surface measure σ minimizes the energy IK over P(Sd−1).

Proof. Observe first that in this setup, if Kz is positive definite for one point z ∈ Sd−1, it

is also positive definite for each z ∈ Sd−1 due to rotational invariance, i.e. Definition 8.1.1

only needs to be checked at one point. Consider first F(t,u,v) = tuv and fix any z ∈ Sd−1,
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e.g., z = e1. Then for any ν ∈M (Sd−1),

IKe1
(ν) =

∫
Sd−1

∫
Sd−1

〈x,y〉x1y1dν(x)dν(y) =
d

∑
i=1

( ∫
Sd−1

x1xi dν(x)
)2

≥ 0,

i.e. the kernel K(x,y,z) = 〈x,y〉〈x,z〉〈z,y〉= tuv is 3-positive definite, and hence, by Lemma

8.1.3, so are all of its integer powers, positive linear combinations and their limits. The

conclusion now follows from Theorem 8.4.1.

This corollary provides a whole array of examples: for instance, three-input energies

with kernels K(x,y,z) = tuv, or (tuv)n, or etuv are all minimized by σ . We remark that,

while for K = tuv this statement could be proved using semidefinite programming methods,

for higher powers (tuv)n this would be extremely difficult technically, and for kernels like

etuv almost impossible.

For even exponents, the energies with the kernels K = (uvt)2k can be viewed as three-

input generalizations of the well-known p-frame potentials discussed in Chapter 6. We also

point out that Proposition 8.5.2 provides a more general class of n-positive definite kernels,

which contains K = tuv as a special case.

Unfortunately, unlike the classical two-input case, the converse to Theorem 8.4.1 is not

true: Propositions 8.6.1, 8.6.2, 8.6.3, and 8.6.4 show that some kernels, naturally arising in

semidefinite programming and geometry, fail to be conditionally n-positive definite, even

though σ minimizes corresponding energies (see Theorems 8.7.1, 8.8.1, and 8.8.3). In

other words, conditional n-positive definiteness of the kernel is not equivalent to the fact

that σ minimizes the energy.

We suspect that the property that σ minimizes IK is equivalent to Uσn−2

K being condi-

tionally positive definite, i.e. the two-input energy I
Uσn−2

K
is minimized by σ . This conjec-

ture is supported by all examples currently known to us. Conditional positive-definiteness

of Uσn−2

K obviously follows from conditional n-positive definiteness of K, due to Lemma

8.1.2, but the converse implication is not true. In fact, all the kernels discussed in Sec-
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tion 8.6 possess this property: they are not 3-positive definite, but their potentials Uσ
K with

respect to σ are (conditionally) positive definite, and the corresponding energies IK are

minimized by σ .

Theorem 8.4.3 below (which is essentially a restatement of Theorem 8.3.8 for the spher-

ical case, along with the fact that σ has full support) shows that conditional positive def-

initeness of Uσn−2

K is implied if σ is a local minimizer of IK , and a partial converse to

this statement also holds. Observe that, if the conjecture above is true, then being a local

and global minimizer are equivalent for σ , a fact is indeed true for the two-input energies

(Theorem 3.3.1).

Theorem 8.4.3. Let K : (Sd−1)n→ R be a continuous, symmetric, and rotationally invari-

ant kernel.

1. Assume that σ is a local minimizer of IK in P(Sd−1). Then the uniform measure

σ is a global minimizer of the two-input energy I
Uσn−2

K
, or, equivalently, Uσn−2

K is

conditionally positive definite on the sphere Sd−1.

2. Assume that σ is the unique global minimizer of I
Uσn−2

K
over P(Sd−1). Then σ is a

local minimizer of the n-input energy IK .

Theorem 8.4.3 above shows that if σ is a global minimizer of IK , then the potential

Uσn−2

K is conditionally positive definite. We do not know whether the converse of this

statement holds. One can show, however, at least for n = 3 that if σ minimizes IUσ
K

(in

other words, Uσ
K is conditionally positive definite), but fails to minimize IK , then the global

minimizer of IK cannot be supported on the whole sphere.

Lemma 8.4.4. Let K : (Sd−1)3→R be a continuous, symmetric, and rotationally invariant

three-input kernel. Assume that Uσ
K is conditionally positive definite on the sphere Sd−1 (i.e.

σ minimizes IUσ
K

), but at the same time σ is not a minimizer of IK . Let µ be a minimizer of

IK . Then supp(µ)( Sd−1.
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Proof. Assume, by contradiction, that supp(µ) = Sd−1. Then, by Theorem 8.3.2, U µ2

K (x) =

IK(µ) for every x ∈ Sd−1, and therefore,

IUσ
K
(µ) = IK(µ,µ,σ) =

∫
Sd−1

U µ2

K (x)dσ(x) = IK(µ).

On the other hand, obviously, IK(σ) = IUσ
K
(σ). Since µ is a minimizer of IK , and σ is

not, we have IK(µ) < IK(σ). This implies that IUσ
K
(µ) < IUσ

K
(σ), which contradicts the

conditional positive definiteness of Uσ
K .

8.5 Positive Definite Kernels

Corollary 8.4.2 of the previous section already provided a class of 3-positive definite func-

tions. In this section we provide several other classes of kernels that are (conditionally)

n-positive definite.

General Classes of (Conditionally) n-positive Definite Kernels

We start with some very natural examples, which show how to construct (conditionally)

n-positive definite kernels from kernels with fewer inputs. In particular, we show that an

n-input kernel can be constructed from m-input ones, m < n, by considering the sum or

product over all m-element subsets of inputs. We first deal with the statement about the

sum.

Proposition 8.5.1. Let 2≤m≤ n−1, and suppose H : Ωm→R is continuous, symmetric,

and conditionally m-positive definite. Then

K(z1, ...,zn) := ∑
1≤ j1< j2<···< jm≤n

H(z j1,z j2, ...,z jm)

is conditionally n-positive definite.
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Proof. Let ν be a finite signed Borel measure on Ω such that ν(Ω) = 0. Then for any fixed

z1, ...,zn−2 ∈Ω, since H is conditionally m-positive definite, we have

∫
Ω

∫
Ω

K(z1,...,zn−2,x,y)dν(x)dν(y) =
∫
Ω

∫
Ω

∑
1≤l1<···<lm≤n−2

H(zl1, ...,zlm)dν(x)dν(y)

+
∫
Ω

∫
Ω

∑
1≤k1<···<km−1≤n−2

(
H(zk1, ...,zkm−1,x)+H(zk1 , ...,zkm−1,y)

)
dν(x)dν(y)

+
∫
Ω

∫
Ω

∑
1≤ j1<···< jm−2≤n−2

H(z j1, ...,z jm−2,x,y)dν(x)dν(y)

= ∑
1≤ j1<···< jm−2≤n−2

∫
Ω

∫
Ω

H(z j1, ...,z jm−2,x,y)dν(x)dν(y)≥ 0,

which shows that K is conditionally n-positive definite.

We can also prove an analogue of Proposition 8.5.1 for products of positive definite

functions.

Proposition 8.5.2. Let 2≤m≤ n−1 and assume that H : Ωm→R is continuous, symmet-

ric, and m-positive definite. If H is a nonnegative function or m = n−1, then

K(z1, ...,zn) = ∏
1≤ j1<···< jm≤n

H(z j1, ...,z jm)

is n-positive definite.
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Proof. Fix z1, . . . ,zn−2 ∈Ω. We can write

K(z1, . . . ,zn−2,x,y) = ∏
1≤ j1<···< jm≤n−2

H(z j1, . . . ,z jm) (8.35)

× ∏
1≤ j1<···< jm−1≤n−2

H(z j1, . . . ,z jm−1 ,x) (8.36)

× ∏
1≤ j1<···< jm−1≤n−2

H(z j1, . . . ,z jm−1 ,y) (8.37)

× ∏
1≤ j1<···< jm−2≤n−2

H(z j1, . . . ,z jm−2,x,y). (8.38)

Observe that the product in line (8.35) is non-negative when H ≥ 0 or if m = n− 1 (the

product is empty in the latter case). The product of lines (8.36) and (8.37) is positive

definite as a function of x and y: indeed, it has the form F(x,y) = φ(x)φ(y) and hence

IF(µ) =

(∫
Ω

φ(x)dµ(x)
)2

≥ 0

for any µ ∈M (Ω). Finally, every factor in the product in line (8.38) is positive definite as

a function of x and y, because H is m-positive definite. Thus, Schur’s product theorem (see

Lemma 8.1.3) ensures that the whole product is positive definite as a function of x and y,

therefore, K is n-positive definite.

Propositions 8.5.1 and 8.5.2 provide us with large classes of n-positive definite kernels.

However, these constructions do not exhaust all such kernels. In the following subsection,

we provide examples of three-positive definite kernels on the sphere, which are not obtained

from two-input kernels by the methods described above.

Three-positive Definite Kernels on the Sphere

We use the same notation as in Section 8.4: for x,y,z ∈ Sd−1, we set t = 〈x,y〉, u = 〈x,z〉,

and v = 〈z,y〉.
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In Corollary 8.4.2, we showed that K = tuv is 3-positive definite on the sphere. Observe

that this is a specific case of Proposition 8.5.2 above, since 〈x,y〉 is a positive definite

function on Sd−1. More generally, Proposition 8.5.2 implies that any kernel of the form

K(x,y,z) = h(t)h(u)h(v) is 3-positive definite, as long as h is a positive definite function on

the sphere.

The kernels considered in Lemmas 8.5.3 and 8.5.4 are closely related to the paral-

lelepiped spanned by the vectors x, y, and z ∈ Sd−1. Indeed, setting a = 2 in (8.39), one

obtains negative volume squared of this parallelepiped: this kernel is not conditionally

3-positive definite according to Proposition 8.6.3, even though σ is a minimizer of the cor-

responding energy, as shown in Theorem 8.8.1. However, positive definiteness does hold

for other values of the parameter a.

Lemma 8.5.3. For a < 1,

K(x,y,z) = t2 +u2 + v2−auvt +
1

1−a
(8.39)

is 3-positive definite.

Proof. Due to rotational invariance, we need only check one value of z. Let z = e1. We
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have that

K(x,y,e1) = 〈x,y〉2 + x2
1 + y2

1−ax1y1〈x,y〉+
1

1−a

=

(
〈x,y〉2−ax1y1〈x,y〉− (1−a)x2

1y2
1

)
+(1−a)x2

1y2
1 + x2

1 + y2
1 +

1
1−a

=

(
〈x,y〉2−ax1y1〈x,y〉− (1−a)x2

1y2
1

)

+
(

x2
1
√

1−a+
1√

1−a

)(
y2

1
√

1−a+
1√

1−a

)
=

d

∑
j=2

d

∑
k=2

x jy jxkyk +(2−a)
d

∑
m=2

x1y1xmym

+
(

x2
1
√

1−a+
1√

1−a

)(
y2

1
√

1−a+
1√

1−a

)
.

We quickly see that for any finite signed Borel measure ν ∈M (Sd−1),

∫
Sd−1

∫
Sd−1

K(x,y,e1)dν(x)dν(y) =
d

∑
j=2

d

∑
k=2

( ∫
Sd−1

x jxkdν(x)
)2

+(2−a)
d

∑
m=2

( ∫
Sd−1

x1xmdν(x)
)2

+
( ∫
Sd−1

(
x2

1
√

1−a+
1√

1−a

)
dν(x)

)2
≥ 0,

hence, K is 3-positive definite.

Lemma 8.5.4. For a≤ 1, K(x,y,z) = t2+u2+v2−auvt is conditionally 3-positive definite.

Proof. For a < 1, according to Lemma 8.5.3, K + 1
1−a is 3-positive definite. Thus, for any

fixed z ∈ Sd−1 and any ν ∈M (Sd−1) with ν(Sd−1) = 0,

IKz(ν) = IKz+
1

1−a
(ν)≥ 0,

i.e. K is conditionally 3-positive definite. Lemma 8.1.3 then gives the result for a = 1.
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8.6 Some Counterexamples

While our results provide new and less complicated means to determine minimizers for a

wide range of kernels, it is clear that more general ideas are necessary to categorize all

kernels on the sphere for which σ is a minimizer. In this subsection, we present naturally

arising kernels on the sphere which are not conditionally 3-positive definite on the sphere,

but yet the three-input energies generated by these kernels are minimized by the uniform

measure σ .

The semidefinite programming methods of Bachoc and Vallentin [BV08], which we

will discuss in Section 8.7 in the context relevant to this paper, are more computationally

difficult than ours, and would likely be infeasible for non-polynomial kernels in the context

relevant to this paper. At the same time, they apply to certain functions which are not

covered by our methods from Section 8.4. In particular, Theorem 8.7.1 shows that the

energies with kernels given by polynomials

Sd
0,1,1(x,y,z) = uv+ vt + tu (8.40)

and

Sd
1,0,0(x,y,z) = (t−uv)+(u− vt)+(v− tu) (8.41)

are both minimized by σ . However, neither function is conditionally 3-positive definite, as

we demonstrate below. This implies that the converse to Theorem 8.4.1 does not hold. In

addition, the potential of both kernels with respect to σ is a positive definite two-input ker-

nel, which provides evidence that this might indeed be the correct necessary and sufficient

condition for σ to minimize the three-input energy (see the discussion before Theorem

8.4.3).

The former example (8.40) is particularly interesting, since the energy functional with

this kernel is convex at the minimizer σ , which suggests that conditional n-positive defi-
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niteness and convexity of the energy functional are perhaps not equivalent for n≥ 3, unlike

the two-input case (see Proposition 3.1.6). We summarize these properties in the following

proposition:

Proposition 8.6.1. Let Ω = Sd−1 and set

K(x,y,z) = Sd
0,1,1(x,y,z) = uv+ vt + tu.

The kernel K satisfies the following:

1. the uniform measure σ minimizes the energy IK ,

2. the energy functional IK is convex at σ ,

3. Uσ
K (x,y) is positive definite,

4. K is not conditionally 3-positive definite.

Proof. As mentioned above, part (1) follows from the semidefinite programming method as

stated in Theorem 8.7.1. However, there is also a simple direct proof of this fact. Observe

that by symmetry, for any ν ∈ P(Sd−1),

IK(ν) = 3
∫

Sd−1

( ∫
Sd−1

〈x,y〉dν(x)
)2

dν(y)≥ 0 = IK(σ). (8.42)

We now turn to parts (2) and (3). We first note that

Uσ
K (x,y) =

∫
Sd−1

〈z,x〉〈y,z〉dσ(z) =
1
d
〈x,y〉,

which follows from Corollary 2.5.2. Hence, the kernel Uσ
K (x,y) is positive definite, i.e.

(3) holds. Therefore σ minimizes the two-input energy with this kernel, i.e., for any ν ∈

P(Sd−1),

IUσ
K
(ν) = IK(ν ,ν ,σ)≥ IUσ

K
(σ) = IK(σ) = 0.
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Observe also that Uσ2

K (x) = 0 and thus IK(σ ,σ ,ν) = 0.

For an arbitrary ν ∈ P(Sd−1) and t ∈ [0,1], define σt = (1− t)σ + tν . Then

IK(σt) = (1− t)3IK(σ)+3(1− t)2tIK(σ ,σ ,ν)+3(1− t)t2IK(ν ,ν ,σ)+ t3IK(ν)

= 3(1− t)t2IK(ν ,ν ,σ)+ t3IK(ν).

If IK(ν) > 0, we can choose tν sufficiently small so that for all t ∈ (0, tν), we have

IK(ν ,ν ,σ)≤ 1+t
3t IK(ν), since the right-hand side goes to +∞ as t→ 0. Then

IK(σt)≤ (1− t2)tIK(ν)+ t3IK(ν) = tIK(ν) = tIK(ν)+(1− t)IK(σ).

It remains to consider the case IK(ν) = 0. According to (8.42), in this situation,∫
Sd−1

〈x,y〉dν(x) = 0 for ν-a.e. y ∈ Sd−1, and therefore

∫
Sd−1

∫
Sd−1

〈x,y〉dν(x)dν(y) = 0.

But this implies that

IK(ν ,ν ,σ) = IUσ
K
(ν) =

∫
Sd−1

∫
Sd−1

1
d
〈x,y〉dν(x)dν(y) = 0.

Thus, when IK(ν) = 0, we have

IK(σt) = 3(1− t)t2IK(ν ,ν ,σ)+ t3IK(ν) = 0 = (1− t)IK(σ)+ tIK(ν)

for all t ∈ [0,1]. This finishes the proof that IK is convex at σ .

Finally, we show that IK is not conditionally 3-positive definite, i.e. part (4). Taking
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µ = δe2−δ−e1 and z = e1, a straightforward computation shows that

IKz(µ) = IK(δe1,µ,µ) =−1 < 0,

which proves our claim.

The behavior of the kernel Sd
1,0,0 is somewhat different.

Proposition 8.6.2. Let Ω = Sd−1 and set

K(x,y,z) = Sd
1,0,0(x,y,z) = (t−uv)+(u− vt)+(v− tu).

The kernel K satisfies the following:

1. the uniform measure σ minimizes the energy IK ,

2. the energy functional IK is not convex at σ ,

3. K is not conditionally 3-positive definite,

4. Uσ
K (x,y) is positive definite.

Proof. As in Proposition 8.6.1, part (1) follows from Theorem 8.7.1. For part (2), we see

that since

IK(δe1 ,δe1,σ) =
∫

Sd−1

(1− z2
1)dσ(z)> 0 = IK(σ) = IK(σ ,σ ,δe1) = IK(δe1),

we have that for all t ∈ (0,1),

IK(tδe1 +(1− t)σ) = 3t2(1− t)IK(δe1,δe1,σ)> tIK(δe1)+(1− t)IK(σ),

so IK is not convex at σ , and therefore K is not conditionally 3-positive definite, according
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to Corollary 8.2.7. Applying Corollary 2.5.2, we find that

Uσ
K (x,y) =

∫
Sd−1

〈x,y〉−〈x,z〉〈z,y〉dσ(z) =
d−1

d
〈x,y〉,

is indeed positive definite.

This shows that convexity of IK at σ and the fact that σ is a minimizer of IK are not

equivalent for three-input energies, unlike in the classical two-input case (see Theorem

3.3.1).

Our remaining two functions arise from geometric problems and are the focus of Sec-

tion 8.8, where we shall demonstrate that the corresponding energies are nevertheless min-

imized by the uniform measure σ (Theorems 8.8.1 and 8.8.4). These three-input kernels

are related to the volume of the parallelepiped spanned by three unit vectors and the area

of the triangle defined by three points on the sphere. We start with the former.

Proposition 8.6.3. Assume d ≥ 3, and let V (x,y,z) be the volume of the parallelepiped

spanned by the vectors x,y,z ∈ Sd−1. Define the kernel K(x,y,z) =−V 2(x,y,z). Then K is

not conditionally 3-positive definite.

Proof. It is well-known that the volume squared of the parallelepiped spanned by three

vectors is given by the determinant of their Gram matrix, i.e.

V 2(x,y,z) = det


1 u v

u 1 t

v t 1

= 1−u2− v2− t2 +2uvt.

Fixing z = e1, we find that Ke1(x,y) = t2 + y2
1 + x2

1− 2tx1y1− 1. It is easy to check that

Ke1(e1,e1) = Ke1(e1,y) = Ke1(x,e1) = 0 and hence

Ke1(x,y)+Ke1(e1,e1)−Ke1(e1,y)−Ke1(x,e1) = Ke1(x,y). (8.43)
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Taking ν = δe2 +δe3 , one can compute

IKe1
(ν) =−2 < 0,

i.e. Ke1 is not positive definite. Lemma 2.2.6 and (8.43) then tell us that Ke1 is not condi-

tionally positive definite and thus K is not conditionally 3-positive definite.

We now turn to area squared of a triangle and prove an analogous statement.

Proposition 8.6.4. Assume that d ≥ 2. Let A(x,y,z) be the area of the triangle with vertices

at x,y,z ⊂ Sd−1 and set K(x,y,z) = −A2(x,y,z). Then K is not conditionally 3-positive

definite.

Proof. Using Heron’s formula or linear algebra, see (8.53), one can compute that

A2(x,y,z) =
3
4
− 1

2
(u+ v+ t)+

1
2
(uv+ vt + tu)− 1

4
(u2 + v2 + t2).

Fixing z = e1, we find that

4Ke1(x,y) = t2 + x2
1 + y2

1 +2t +2x1 +2y1−2x1y1−2tx1−2ty1−3.

The rest of the argument almost repeats the proof of Proposition 8.6.3: we have that

Ke1(x,y)+Ke1(e1,e1)−Ke1(e1,y)−Ke1(x,e1) = Ke1(x,y), (8.44)

as well as

IKe1
(δe2 +δ−e1) =−2 < 0,

and an application of Lemma 2.2.6 finishes the proof.
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8.7 Semidefinite Programming

The semidefinite programming method is a powerful and delicate tool that has been suc-

cessfully applied to numerous optimization problems on the sphere [BV08, CW12, dLMd-

OFV, Mus14]. Some intrinsic features of the method (the so-called three-point bounds or,

more generally, k-point bounds [CW12, dLMdOFV]) naturally give rise to certain multi-

input energies. Thus, it comes as no surprise that this method is also useful in our context.

We briefly recall some of the main notions of the method. We start with the fundamental

class of polynomials constructed by Bachoc and Vallentin in [BV08]. The role of these

polynomials in semidefinite programming is similar to that of the classical Gegenbauer

polynomials in linear programming. The construction starts with a class of infinite matrices

and associated polynomials of the form

(Y d
k )i+1, j+1(x,y,z) := Y d

k,i, j(x,y,z) := λ
k,d
i, j Pd+2k

i (u)Pd+2k
j (v)Qd

k (u,v, t), (8.45)

where k, i, j ∈ N0, Ph
m is the Gegenbauer polynomial of degree m on Sh−1, normalized so

that Ph
m(1) = 1, i.e. Ph

m =C
( h−3

2 , h−3
2 )

m ,

λ
k,d
i, j :=

Ad−1

Ad−2

Ad+2k−2

Ad+2k−1

(
dim(H d+2k

i )dim(H d+2k
j )

)1/2

(recall that Ah−1 is the surface area of Sh−1 and H h
n is the space of spherical harmonics of

degree n on Sh−1), and

Qd
k (u,v, t) = ((1−u2)(1− v2))

k
2 Pd−1

k

(
t−uv√

(1−u2)(1− v2)

)
.

Below we provide the upper left 3× 3, 2× 2, and 1× 1 submatrices of infinite matrices

Y d
0 , Y d

1 , and Y d
2 , respectively, which is all that will be needed for the geometric results in
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Section 8.8:
1

√
dv

√
(d+1)d

2 −1 dv2−1
d−1

√
du duv

√
(d+1)d2

2 −d udv2−1
d−1√

(d+1)d
2 −1 dv2−1

d−1

√
(d+1)d2

2 −d du2−1
d−1 v

(
(d+1)d

2 −1
)

du2−1
d−1

dv2−1
d−1


 d

d−1(t−uv) d
√

d+2
d−1 u(t−uv)

d
√

d+2
d−1 v(t−uv) d(d+2)

d−1 uv(t−uv)

 ,

(
d(d+2)

(d−1)(d+1)
(d−1)(t−uv)2−(1−u2)(1−v2)

d−2

)
.

Note that the polynomials comprising these matrices are not symmetric. Averaging over all

permutations π of the variables x, y, and z, one obtains the following symmetric matrices

and associated polynomials

(Sd
k )i+1, j+1(x,y,z) := Sd

k,i, j(x,y,z) :=
1
6 ∑

π

Y d
k,i, j(π(x),π(y),π(z)). (8.46)

These polynomials and matrices have a variety of nice properties, which we summarize be-

low in the form pertinent to our discussion. In [BV08], all the results are stated for discrete

energies of points set. However, the extension to energy integrals and measures, which we

need, follows immediately from the weak∗ density of discrete measures in P(Sd−1). The

following statements hold:

• For any µ ∈ P(Sd−1) and e ∈ Sd−1, the infinite matrices

∫
Sd−1

∫
Sd−1

Y d
k (x,y,e)dµ(x)dµ(y)

and

Sd
k (µ) :=

∫
Sd−1

∫
Sd−1

∫
Sd−1

Sd
k (x,y,z)dµ(x)dµ(y)dµ(z)

are positive semidefinite (to be more precise, all finite principal minors are positive

semidefinite).
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• For (k, i, j) 6= (0,0,0), we have ISd
k,i, j

(σ) = 0 and IY d
k,i, j

(σ ,σ ,δe) = 0 for all e ∈ Sd−1.

• For k ≥ 1 and any e ∈ Sd−1, one has ISd
k,i, j

(δe) = IY d
k,i, j

(δe) = 0.

Consider an infinite, symmetric, positive semidefinite matrix A with finitely many nonzero

entries. Then for any k ≥ 1 and µ ∈ P(Sd−1), one easily sees that tr(Sd
k (µ)A) ≥ 0, with

equality if µ = σ . Likewise, when k = 0, if A0 is an infinite, positive semidefinite matrix A

with finitely many nonzero entries and such that all entries in the first row and first column

are zeros, then tr(Sd
0(µ)A0) ≥ 0 for any probability measure µ , with equality if µ = σ .

(Requiring zeros in the first row and column guarantees that equality for µ = σ ; due to

the fact that Sd
0,0,0 is a constant, equality might not be achieved otherwise.) This yields the

following sufficient condition for σ to be a minimizer of a three-input energy integral IK .

Theorem 8.7.1. Let m ∈ N0. For each k ≤ m, let Ak be an infinite, symmetric, positive

semidefinite matrix with finitely many nonzero entries, with the additional requirement that

A0 has only zeros in its first row and first column. Let

K(x,y,z) =C+
m

∑
k=0

tr(Sd
k (x,y,z),Ak), (8.47)

where C is an arbitrary constant. Then σ minimizes IK in P(Sd−1).

Under appropriate convergence assumptions, the theorem also holds with m = ∞. No-

tice that the fact that σ minimizes the energies with kernels (8.40) and (8.41) immediately

follows from Theorem 8.7.1. In general, in order to apply Theorem 8.7.1, one needs to

represent the kernel in the form (8.47) – a task which becomes more complex as m grows.

8.8 Results in Probabilistic Geometry

Riesz s-energies with the kernel K(x,y) = ‖x− y‖−s, discussed in Section 2.1, are one of

the most important classes of two-input energies. In particular, when s =−1, maximizing
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the sum of distances between points on various spaces (as well as corresponding distance

integrals) is a classical optimization problem from metric geometry [AS74, Bjö56, FT56].

One can construct interesting multi-input analogues of Riesz energies by replacing the

distance with other geometric characteristics which depend on n points, such as area and

volume.

For n = 3, some of the most natural examples include the area of the triangle generated

by three points or the volume of the tetrahedron (or the parallelepiped) spanned by three

vectors. This can be generalized to higher values of n by considering volumes of various

simplices or polytopes generated by n points or vectors.

It is reasonable to conjecture that on the sphere, energy integrals with these three-input

kernels (namely, the area of the triangle and the volume of the parallelepiped) are maxi-

mized by the uniform measure σ . Probabilistically, this can be reformulated in the follow-

ing way: assume that three random points are chosen on the sphere Sd−1 independently

according to a probability distribution µ . The conjecture then states that the expected value

of these geometric quantities is maximized when the distribution µ is uniform, i.e. µ = σ .

The question was posed in this form in [Rom19].

This conjecture is supported, among other reasons, by the fact that for the classical case

n = 2, the analogous kernels |sin(arccos〈x,y〉)|=
√

1− t2 and ‖x− y‖ =
√

2−2t (i.e. the

area of the parallelogram spanned by vectors x and y and the Euclidean distance between

x and y, respectively) are both negative definite kernels on the sphere (up to an additive

constant), and hence the corresponding two-input energies are maximized by σ .

In this section, we verify the conjecture above for the slightly different, yet closely

related kernels V 2 and A2: the squares of the aforementioned volume and area. In these

cases, the kernels are multivariate polynomials, which substantially simplifies the analysis.

For both kernels, we provide two proofs: one based on the semidefinite programming

methods as outlined in Section 8.7, the other a more direct proof based on geometry and

linear algebra.
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Volume of the Tetrahedron/Parallelepiped

Let V (x,y,z) denote the three-dimensional volume of the parallelepiped spanned by the

vectors x, y, z ∈ Sd−1. (Observe that the volume of the tetrahedron with vertices at x, y, z,

and the origin is given by 1
6V (x,y,z).) The square of the volume V (x,y,z) is given by the

determinant of the Gram matrix. Thus we consider the kernel

K(x,y,z) =V 2(x,y,z) = det


1 t u

t 1 v

u v 1

= 1− t2−u2− v2 +2tuv, (8.48)

where, as before, we set t = 〈x,y〉, u = 〈x,z〉, v = 〈z,y〉.

As shown by Proposition 8.6.3, the kernel −V 2 is not conditionally 3-positive definite.

Nevertheless, we shall show that σ is a minimizer of I−V 2 , i.e. a maximizer of IK = IV 2 .

One can check directly that

K(x,y,z) =
(d−1)(d−2)

d2 − 2(d−2)
d2(d +2)

S0,2,2

− 4(d−1)(d−2)
d2(d +2)

S1,1,1−
(3d−4)(d +1)(d−2)

d2(d +2)
S2,0,0,

(8.49)

hence, Theorem 8.7.1 implies that σ is a maximizer of IK .

Theorem 8.8.1. Assume that d ≥ 3 and Ω = Sd−1. Let K(x,y,z) = V 2(x,y,z) = 1− t2−

u2− v2 +2uvt. Then σ is a maximizer of IK over P(Sd−1).

Moreover, since K in this case is a polynomial of degree two in every variable, and has

no linear terms, any isotropic measure on the sphere, i.e., any measure µ ∈ P(Sd−1) satis-

fying
∫

Sd−1
xxT dµ(x) = 1

d Id , is also a maximizer, and in fact this classifies all maximizers.

This statement can be generalized to a higher number of inputs. As discussed in Sec-

tion 6.5, we may consider optimization for probability measures on Rd with the additional

normalizing condition:
∫
Rd
‖x‖2dµ(x) = 1. As before, we will denote the space of such mea-
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sures by P∗(Rd), and we say that µ ∈ P(Rd) is an isotropic measure if
∫
Rd

xxT dµ(x) = 1
d Id .

One can easily see that any isotropic measure µ ∈P(Rd) satisfies the normalizing condition

as well, i.e. µ ∈ P∗(Rd).

Let 3≤ n≤ d and consider the n-input kernel K(x1, . . . ,xn) defined as the determinant

of the Gram matrix of the set of vectors {x1, . . . ,xn} ⊂ Rd . Observe that for n = 3, this

coincides with the 3-input kernel (8.48). The following result contains Theorem 8.8.1 as a

special case. The case n = d has been proved by Rankin [Ran56] and the general case is

due to Cahill and Casazza [CC].

Theorem 8.8.2. Let d ≥ 3 and let the n-input kernel K be as defined above. Then the set of

maximizing measures of IK in P∗(Rd) is the set of isotropic measures on Rd . As a corollary,

any isotropic measure on Sd−1, in particular, the uniform surface measure σ , maximizes IK

over P(Sd−1).

The proof of the case n = d is particularly concise and elegant, so we include it below.

Proof. We start with the discrete case, which was considered in [Ran56]. Let µ ∈ P∗(Rd)

be an equal-weight discrete measure, i.e. µ = 1
N ∑δxi , with support consisting of N ≥ d vec-

tors x1, . . . ,xN . Let D be a matrix formed by these vectors as columns. The normalization

condition then implies that tr(DDT ) = tr(DT D) = ∑‖xi‖2 = N.

We denote the set of all d-subsets of {1, . . . ,N} by [N]d and set [d] = {1, . . . ,d}. For

two sets of indices S1⊂ [d] and S2⊂ [N], let DS1,S2 stand for the minor of D defined by rows

with indices in S1 and columns with indices in S2. Observe that for S = {i1, . . . , id} ∈ [N]d ,

the kernel K satisfies

K(xi1 , . . . ,xid) = det
(
(DT )[d],SDS,[d]

)
= det2(D[d],S).

Therefore, the energy can be expressed as

IK(µ) = EK
(
{xi}N

i=1
)
=

d!
Nd ∑

S∈[N]d

det2(D[d],S) =
d!
Nd ∑

S∈[N]d

det(D[d],S)det((DT )S,[d]).
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By the Cauchy–Binet formula, the sum above is just det(DDT ), i.e.

IK(µ) =
d!
Nd det(DDT ).

The matrix DDT is positive definite, hence all eigenvalues are nonnegative, and their

sum equals tr(DDT ) = N due to the normalizing condition. Since the determinant of DDT

is the product of eigenvalues, by the geometric-arithmetic mean inequality, it satisfies

det(DDT )≤
(

tr(DDT )

d

)d

=

(
N
d

)d

. (8.50)

Hence, the energy is bounded above by

IK(µ) =
d!
Nd det(DDT )≤ d!

Nd

(
N
d

)d

=
d!
dd . (8.51)

Equality in (8.50)–(8.51) is possible if and only if all eigenvalues of DDT are equal to N
d ,

i.e. DDT = N
d Id , which is equivalent to the fact that µ is an isotropic measure, since for the

discrete measure µ = 1
N ∑δxi ∈ P(Sd−1) we would have

∫
Sd−1

xxT dµ(x) =
1
N

DDT =
1
d

Id.

Observe that this is equivalent to saying that the set {x1, . . . ,xN} ⊂ Sd−1 is a projective

1-design.

Since the right-hand side of (8.51) does not depend on N, one may easily pass from

discrete to arbitrary measures µ , thus finishing the proof of the theorem.

Area of the Triangle

We now turn to exploring the area A(x,y,z) of the triangle with vertices x, y, and z. As in

the previous section, rather than considering the spherical case directly, we shall consider
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probability measures µ on the whole space Rd which satisfy the normalizing condition∫
Rd
‖x‖2dµ(x) = 1, i.e. measures in the class P∗(Rd). It is a standard geometrical fact that

A2(x,y,z) =
1
4
(
‖y− x‖2 · ‖z− x‖2−〈y− x,z− x〉2

)
. (8.52)

We shall keep the notation t = 〈x,y〉, u= 〈x,z〉, v= 〈z,y〉 despite the fact that the vectors

x,y,z∈Rd do not necessarily lie on the sphere Sd−1. A straightforward computation shows

that
A2(x,y,z) =

1
4
(‖x‖2‖y‖2 +‖y‖2‖z‖2 +‖z‖2‖x‖2)

+
1
2
(uv+ vt + tu)− 1

2
(t‖z‖2 + v‖x‖2 +u‖y‖2)

− 1
4
(u2 + v2 + t2).

(8.53)

We are now ready to prove that the expectation of the area of the triangle squared is max-

imized by isotropic measures with barycenter at zero – in particular, the uniform surface

measure σ on the sphere Sd−1 is a maximizer.

Theorem 8.8.3. Suppose d ≥ 2, and let K : (Rd)3→R be defined by K(x,y,z) = A2(x,y,z).

Then µ is a maximizer of IK(µ) over P∗(Rd) if and only if µ is isotropic and has center of

mass at the origin.

Observe that for discrete measures, this condition yields exactly the weighted spherical

2-designs.

Proof. Fix an arbitrary measure µ ∈ P∗(Rd). First of all, observe that the normalizing

condition implies that the first line in the representation (8.53) contributes the constant 3
4 to

the energy. Invoking the normalizing condition again, we observe that

It‖z‖2(µ) =
∫
Rd

∫
Rd

∫
Rd

〈x,y〉‖z‖2dµ(x)dµ(y)dµ(z)

=
∫
Rd

∫
Rd

〈x,y〉dµ(x)dµ(y) =

∣∣∣∣∣∣
∣∣∣∣∣∣
∫
Rd

x µ(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

(8.54)
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Furthermore, applying the Cauchy–Schwarz inequality and the normalization condi-

tion, we obtain

Itu(µ) =
∫
Rd

∫
Rd

〈x,y〉〈z,x〉dµ(x)dµ(y)dµ(z) =
∫
Rd

〈
x,
∫
Rd

ydµ(y)

〉2

dµ(x)

≤
∫
Rd

‖x‖2 ·

∥∥∥∥∥∥
∫
Rd

ydµ(y)

∥∥∥∥∥∥
2

dµ(x) =

∥∥∥∥∥∥
∫
Rd

ydµ(y)

∥∥∥∥∥∥
2

= It‖z‖2(µ).

(8.55)

This inequality implies that the contribution of the two middle terms in the representation

(8.53) is non-positive, i.e.

I1
2 (uv+vt+tu)− 1

2 (t‖z‖2+v‖x‖2+u‖y‖2)(µ)≤ 0,

and therefore,

IK(µ)≤
3
4
− 1

4
Iu2+v2+t2(µ). (8.56)

Finally, we have a well-known estimate for the frame energy (discussed in Section 6.1)

It2(µ) =
∫
Rd

∫
Rd

〈x,y〉2dµ(x)dµ(y)≥ 1
d
, (8.57)

with the equality holding if and only if µ is isotropic. This can be inferred from Lemmas

6.1.3 and 6.5.1, but for completeness, we include a simple proof of (8.57):

∫
Rd

∫
Rd

〈x,y〉2dµ(x)dµ(y) =
∫
Rd

∫
Rd

d

∑
i, j=1

xiyix jy jdµ(x)dµ(y)

=
d

∑
i, j=1

∫
Rd

xix jdµ(x)

2

≥
d

∑
i=1

∫
Rd

x2
i dµ(x)

2

≥ 1
d

 d

∑
i=1

∫
Rd

x2
i dµ(x)

2

=
1
d

∫
Rd

‖x‖2dµ(x)

2

= 1,
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where we have dropped the off-diagonal terms and used the Cauchy–Schwarz inequality,

which implies that equality holds if and only if
∫
Rd

xxT dµ(x) = 1
d Id , i.e. µ is isotropic.

Putting together (8.56) and (8.57), we find that

IK(µ)≤
3
4
− 1

4
Iu2+v2+t2(µ)≤

3
4
− 3

4d
=

3
4

d−1
d

.

The equality holds if and only if it holds in inequalities (8.55) and (8.57). In the latter case,

it means that µ is isotropic. In the former, it means that, for µ-almost every x ∈ supp(µ),

the vector x is collinear to
∫

ydµ(y). However, if
∫

ydµ(y) 6= 0 that would imply that

the support of µ is contained in a one-dimensional subspace, which is impossible for an

isotropic measure. Therefore,
∫

ydµ(y) = 0, in other words, the center of mass of µ has to

be at the origin. This finishes the proof of the theorem.

Theorem 8.8.3 immediately implies the characterization of the maximizers among prob-

ability measures on the sphere.

Theorem 8.8.4. Suppose d≥ 2, and let K : (Sd−1)3→R be defined by K(x,y,z)=A2(x,y,z).

Then µ is a maximizer of IK(µ) over P(Sd−1) if and only if µ is isotropic and has center of

mass at the origin. In particular, the uniform measure σ maximizes IK .

We want to point out that this statement can also be proved using semidefinite program-

ming. Representation (8.53) for x, y, z ∈ Sd−1 yields

K(x,y,z) = A2(x,y,z) =
3
4
− u+ v+ t

2
+

ut +uv+ tv
2

− u2 + t2 + v2

4
. (8.58)

This kernel can be rewritten as

K =
3(d−1)

4d
− 3(d +1)(d−2)

4d(d +2)
S2,0,0−

3(d−1)
2d

S1,0,0−
3(d−1)

2d(d +2)
S1,1,1−

3
2d(d +2)

S0,2,2,

and Theorem 8.7.1 then tells us that σ maximizes IK . The fact that µ is isotropic and has
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center of mass at the origin is easily seen to be equivalent to the relation
∫

Sd−1
p(x)dµ(x) =∫

Sd−1
p(x)dσ(x) for each polynomial p of degree two. Since K is a polynomial of degree

two in each variable, the conclusion of Theorem 8.8.4 follows.

Discrete Maximizers

While the kernels given by the volume of the parallelepiped and the area of the triangle

are far more complicated to deal with than their squares, the results of Theorems 8.8.1

and 8.8.4 can nevertheless be used to show that a regular simplex is optimal for discrete

energies with these kernels when the number of points is d + 1. We have the following

general statement.

Theorem 8.8.5. Let d ≥ n− 1 and let B : (Sd−1)n → [0,∞) be a symmetric, rotationally

invariant polynomial of degree no more than two in each of its variables, with the property

that if xi = x j for some i 6= j, then B(x1,x2, ...,xn) = 0. Assume further that σ is a maximizer

of IB over P(Sd−1).

Let the function f : [0,∞)→ R be concave, increasing, and right continuous at 0, and

define the kernel K(x1, ...,xn)= f (B(x1, ...,xn)). If N = d+1, then the vertices of regular N-

simplices inscribed in Sd−1 with centers at the origin maximize the discrete energy EK(ωN)

over all N-point configurations on the sphere.

Proof. Let ωN = {z1, ...,zN} be an arbitrary point configuration on Sd−1. Then we have

EB(ωN) =
1

Nn

N

∑
m1=1
· · ·

N

∑
mn=1

B(zm1, ...,zmn)≤ IB(σ),

with equality occurring if the point configuration is a spherical 2-design. Since B is zero

if two of its inputs are the same, we can restrict the sum to n-tuples with distinct entries.

223



Combining this with the fact that f is increasing and concave, we have

EK(ωN) :=
1

Nn

N

∑
j1=1
· · ·

N

∑
jn=1

f (B(z j1, ...,z jn))

≤ N(N−1) · · ·(N−n+1)
Nn f

 ∑
z j1 ,...,z jn∈ωN
j1,..., jn distinct

B(z j1, ...,z jn)

N(N−1) · · ·(N−n+1)


=

N(N−1) · · ·(N−n+1)
Nn f

(
NnEB(ωN)

N(N−1) · · ·(N−n+1)

)
≤ N(N−1) · · ·(N−n+1)

Nn f
(

NnIB(σ)

N(N−1) · · ·(N−n+1)

)
.

The second inequality is achieved if ωN is a spherical 2-design, in particular, if ωN is a

regular simplex. The first one becomes an equality if

B(y1, ...,yn) =
NnEB(ωN)

N(N−1) · · ·(N−n+1)

for all distinct y1, ...,yn ∈ ωN . Since B is rotationally invariant, the simplex satisfies this

condition as well. Hence, the regular simplex is a maximizer of EK for N = d +1.

Theorem 8.8.5 immediately applies to the energies considered in Theorems 8.8.1 and

8.8.4.

Corollary 8.8.6. Let K(x,y,z) denote the area of the triangle with vertices x,y,z or the

volume of the parallelepiped spanned by x, y, and z. If N = d + 1, then the regular N-

simplices inscribed in Sd−1 with centers at the origin maximize EK(ωN) over all N-point

configurations on the sphere.

Proof. From Theorems 8.8.4 and 8.8.1, we see that in both cases, K2(x,y,z) satisfies the

conditions of Theorem 8.8.5. Setting f (x) =
√

x in Theorem 8.8.5 finishes the proof.
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[MT] D.B. Massey and L.D. Tráng, Notes on Real and Complex Analytic and Semianalytic Singu-

larities.

[Mat99] J. Matous̆ek, Geometric discrepancy: An illustrated guide, Algorithms and Combinatorics,

vol. 18, Springer-Verlag, Berlin Heidelberg, 1999.

[MMV96] P. Mattila, M.S. Melnikov, and J. Verdera, The Cauchy integral, analytic capacity, and uniform

rectifiability, Annals of Mathematics(2) 144(1) (1996), 127–136.

[Mer09] J. Mercer, Functions of positive and negative type and their connection with the theory of

integral equations, Philosphical Transactions of the Royal Society A 209(441–458) (1909),

415–446.

[Mim90] Y. Mimura, A construction of spherical 2-designs, Graphs and Combinatorics 6 (1990), 369–

373.

[MEK99] A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, Journal of Mathematical

Biology 38(6) (1999), 534–570.

[MEKBS03] A. Mogilner, L. Edelstein-Keshet, L. Bent, and A. Spiros, Mutual interactions, potentials, and

individual distance in a social aggregation, Journal of Mathematical Biology 47 (2003), 353–

389.

[Mül66] C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag,

Berlin-New York, 1966.

[Mus08] O.R. Musin, The kissing number in four dimensions, Annals of Mathematics 168(1) (2008),

1–32.

[Mus14] , Multivariate positive definite functions on spheres, Discrete Geometry and Algebraic

Combinatorics, Contemporary Mathematics 625 (2014), 177–190.

235



[Nes00] Y. Nesterov, Squared functional systems and optimization problems, High performance opti-

mization, Applied Optimization 33 (2000), 405–440.

[Neu81] A. Neumaier, Combinatorial Configurations in terms of Distances, (Eindvohen University of

Technology) Memorandum (1981), 81-90.

[Nie65] F. Nielsen, On Summen af Afstandene Mellem n Punkter pa en Kugleflade, Nordisk Matematisk

Tidskrift 13 (1965), 45-50 (Danish).

[OS79] A.M. Odlyzko and N.J.A. Sloane, New bounds on the number of unit spheres that can touch a

unit sphere in n dimensions, Journal of Combinatorial Theory, Series A 26 (1979), 210–214.

[Pet14] F. Petrov, Maximum Sum of Angles between n Lines, Mathoverflow post (2014), available at

https://mathoverflow.net/q/173712.
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